Reduced-order modelling numerical homogenization

A general framework to combine numerical homogenization and reduced-order modelling techniques for partial differential equations (PDEs) with multiple scales is described. Numerical homogenization methods are usually efficient to approximate the effective solution of PDEs with multiple scales. However, classical numerical homogenization techniques require the numerical solution of a large number of so-called microproblems to approximate the effective data at selected grid points of the computational domain. Such computations become particularly expensive for high-dimensional, time-dependent or nonlinear problems. In this paper, we explain how numerical homogenization method can benefit from reduced-order modelling techniques that allow one to identify offline and online computational procedures. The effective data are only computed accurately at a carefully selected number of grid points (offline stage) appropriately ‘interpolated’ in the online stage resulting in an online cost comparable to that of a single-scale solver. The methodology is presented for a class of PDEs with multiple scales, including elliptic, parabolic, wave and nonlinear problems. Numerical examples, including wave propagation in inhomogeneous media and solute transport in unsaturated porous media, illustrate the proposed method.

[1]  G. Allaire Homogenization and two-scale convergence , 1992 .

[2]  G. Nath,et al.  Development of flow and heat transfer of a viscous fluid in the stagnation-point region of a three-dimensional body with a magnetic field , 1999 .

[3]  Assyr Abdulle,et al.  Finite Element Heterogeneous Multiscale Methods with Near Optimal Computational Complexity , 2008, Multiscale Model. Simul..

[4]  P. Donato,et al.  An introduction to homogenization , 2000 .

[5]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[6]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[7]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[8]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[9]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[10]  C. Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[11]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[12]  Assyr Abdulle,et al.  Adaptive reduced basis finite element heterogeneous multiscale method , 2013 .

[13]  Grégoire Allaire,et al.  Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Grégoire Allaire,et al.  The mathematical modeling of composite materials , 2002 .

[15]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[16]  S. Torquato Random Heterogeneous Materials , 2002 .

[17]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  Sébastien Boyaval,et al.  Mathematical modelling and numerical simulation in materials science , 2009 .

[20]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[21]  Marcus J. Grote,et al.  FE heterogeneous multiscale method for long-time wave propagation , 2013 .

[22]  A. Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2014 .

[23]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[24]  Pingbing Ming,et al.  Heterogeneous multiscale finite element method with novel numerical integration schemes , 2010 .

[25]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[26]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[27]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[28]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[29]  Jamie Alcock,et al.  A note on the Balanced method , 2006 .

[30]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[31]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[32]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[33]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[34]  Christian Miehe,et al.  On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure , 2002 .

[35]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[36]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[37]  Assyr Abdulle,et al.  A priori and a posteriori error analysis for numerical homogenization: a unified framework , 2011 .

[38]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[39]  Timothy R. Ginn,et al.  Richards Equation–Based Modeling to Estimate Flow and Nitrate Transport in a Deep Alluvial Vadose Zone , 2012 .

[40]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[41]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[42]  G. Beylkin,et al.  A Multiresolution Strategy for Numerical Homogenization , 1995 .

[43]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[44]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[45]  Alexander Pankov,et al.  G-Convergence and Homogenization of Nonlinear Partial Differential Operators , 1997 .

[46]  Assyr Abdulle,et al.  Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis , 2012 .

[47]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[48]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[49]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[50]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[51]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[52]  Assyr Abdulle,et al.  Erratum to ''A short and versatile finite element multiscale code for homogenization problems" (Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839-2859) , 2010 .

[53]  Sébastien Boyaval Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2008, Multiscale Model. Simul..

[54]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[55]  Assyr Abdulle,et al.  Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiple scales , 2013, Numerische Mathematik.

[56]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[57]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[58]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[59]  A. Quarteroni,et al.  Numerical validation of isotropic and transversely isotropic constitutive models for healthy and unhealthy cerebral arterial tissues , 2013 .

[60]  Assyr Abdulle,et al.  An offline–online homogenization strategy to solve quasilinear two‐scale problems at the cost of one‐scale problems , 2014 .

[61]  Eric F. Wood,et al.  NUMERICAL EVALUATION OF ITERATIVE AND NONITERATIVE METHODS FOR THE SOLUTION OF THE NONLINEAR RICHARDS EQUATION , 1991 .

[62]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[63]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[64]  Assyr Abdulle,et al.  The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods , 2011 .