Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin

[1]  N. Strynadka,et al.  Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. , 2018, Current opinion in structural biology.

[2]  B. Maček,et al.  Structure of the Core of the Type Three Secretion System Export Apparatus , 2018, bioRxiv.

[3]  T. Lithgow,et al.  Structural Basis of Type 2 Secretion System Engagement between the Inner and Outer Bacterial Membranes , 2017, mBio.

[4]  B. Finlay,et al.  Assembly, structure, function and regulation of type III secretion systems , 2017, Nature Reviews Microbiology.

[5]  Jun Liu,et al.  In Situ Molecular Architecture of the Salmonella Type III Secretion Machine , 2017, Cell.

[6]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[7]  V. Nizet,et al.  Blood Group Antigen Recognition via the Group A Streptococcal M Protein Mediates Host Colonization , 2017, mBio.

[8]  Xueming Li,et al.  Structural insights into the secretin translocation channel in the type II secretion system , 2017, Nature Structural &Molecular Biology.

[9]  Hanchuan Peng,et al.  Automatic tracing of ultra-volumes of neuronal images , 2016, Nature Methods.

[10]  Sjors H.W. Scheres,et al.  Helical reconstruction in RELION , 2016, bioRxiv.

[11]  B. Finlay,et al.  Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body , 2016, Nature.

[12]  Matthias J. Brunner,et al.  Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus , 2016, PLoS pathogens.

[13]  Gretchen A. Stevens,et al.  A century of trends in adult human height , 2016, eLife.

[14]  B. Averhoff,et al.  Topology and Structure/Function Correlation of Ring- and Gate-forming Domains in the Dynamic Secretin Complex of Thermus thermophilus* , 2016, The Journal of Biological Chemistry.

[15]  Frank DiMaio,et al.  Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta , 2016, bioRxiv.

[16]  B. Maček,et al.  Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach* , 2016, Molecular & Cellular Proteomics.

[17]  Roger A. Moore,et al.  The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients , 2016, PLoS pathogens.

[18]  Anchi Cheng,et al.  Automated data collection in single particle electron microscopy. , 2016, Microscopy.

[19]  H. Saibil,et al.  Structure of a bacterial type III secretion system in contact with a host membrane in situ , 2015, Nature Communications.

[20]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[21]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[22]  Benjamin Brandt,et al.  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells , 2015, eLife.

[23]  Nikolaus Grigorieff,et al.  Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6 , 2015, eLife.

[24]  Fabio C Gozzo,et al.  Correction: Corrigendum: αB-crystallin interacts with and prevents stress-activated proteolysis of focal adhesion kinase by calpain in cardiomyocytes , 2015, Nature Communications.

[25]  Nathaniel Echols,et al.  EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy , 2015, Nature Methods.

[26]  Jun Liu,et al.  Visualization of the type III secretion sorting platform of Shigella flexneri , 2015, Proceedings of the National Academy of Sciences.

[27]  D. Baker,et al.  The modular structure of the inner-membrane ring component PrgK facilitates assembly of the type III secretion system basal body. , 2015, Structure.

[28]  K. Hughes,et al.  ATPase-Independent Type-III Protein Secretion in Salmonella enterica , 2014, PLoS genetics.

[29]  T. Marlovits,et al.  Structure of a pathogenic type 3 secretion system in action , 2013, Nature Structural &Molecular Biology.

[30]  M. Chami,et al.  Bacterial Secretins Form Constitutively Open Pores Akin to General Porins , 2013, Journal of bacteriology.

[31]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[32]  Samuel I. Miller,et al.  A Refined Model of the Prototypical Salmonella SPI-1 T3SS Basal Body Reveals the Molecular Basis for Its Assembly , 2013, PLoS pathogens.

[33]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[34]  D. Baker,et al.  Atomic model of the type III secretion system needle , 2012, Nature.

[35]  Pimlapas Leekitcharoenphon,et al.  The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium , 2012, Proceedings of the National Academy of Sciences.

[36]  Keiichi Namba,et al.  Structure of a type III secretion needle at 7-Å resolution provides insights into its assembly and signaling mechanisms , 2012, Proceedings of the National Academy of Sciences.

[37]  W. Hol,et al.  Secretins: dynamic channels for protein transport across membranes. , 2011, Trends in biochemical sciences.

[38]  T. Marlovits,et al.  Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution , 2011, Science.

[39]  M. Chami,et al.  Multimerization-defective variants of dodecameric secretin PulD. , 2011, Research in microbiology.

[40]  N. Strynadka,et al.  Structural overview of the bacterial injectisome. , 2011, Current opinion in microbiology.

[41]  Samuel Wagner,et al.  Organization and coordinated assembly of the type III secretion export apparatus , 2010, Proceedings of the National Academy of Sciences.

[42]  N. Strynadka,et al.  PROTEINSTRUCTUREREPORT Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA , 2010 .

[43]  S. Darst,et al.  Identification of the gate regions in the primary structure of the secretin pIV , 2010, Molecular microbiology.

[44]  Matthias J. Brunner,et al.  Topology and Organization of the Salmonella typhimurium Type III Secretion Needle Complex Components , 2010, PLoS pathogens.

[45]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[46]  E. Egelman,et al.  The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. , 2010, Journal of molecular biology.

[47]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[48]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[49]  David Baker,et al.  A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system , 2009, Nature Structural &Molecular Biology.

[50]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[51]  A. Engel,et al.  In vitro multimerization and membrane insertion of bacterial outer membrane secretin PulD. , 2008, Journal of molecular biology.

[52]  Samuel I. Miller,et al.  Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS , 2008, Nature.

[53]  B. Finlay,et al.  Structural analysis of a prototypical ATPase from the type III secretion system , 2007, Nature Structural &Molecular Biology.

[54]  Leonard J Foster,et al.  Quantitative Comparison of Caste Differences in Honeybee Hemolymph*S , 2006, Molecular & Cellular Proteomics.

[55]  F. Cordes,et al.  Molecular model of a type III secretion system needle: Implications for host-cell sensing , 2006, Proceedings of the National Academy of Sciences.

[56]  C. Yip,et al.  New structural insights into the bacterial type III secretion system. , 2006, Trends in biochemical sciences.

[57]  W. Picking,et al.  The Needle Component of the Type III Secreton of Shigella Regulates the Activity of the Secretion Apparatus* , 2005, Journal of Biological Chemistry.

[58]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[59]  Samuel I. Miller,et al.  Structural characterization of the molecular platform for type III secretion system assembly , 2005, Nature.

[60]  T. Marlovits,et al.  Structural Insights into the Assembly of the Type III Secretion Needle Complex , 2004, Science.

[61]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[62]  J. Tommassen,et al.  Structure and Electrophysiological Properties of the YscC Secretin from the Type III Secretion System of Yersinia enterocolitica , 2004, Journal of bacteriology.

[63]  J. Heesemann,et al.  Yersinia enterocolitica Type III Secretion Depends on the Proton Motive Force but Not on the Flagellar Motor Components MotA and MotB , 2004, Infection and Immunity.

[64]  F. Cordes,et al.  Helical Structure of the Needle of the Type III Secretion System of Shigella flexneri * , 2003, The Journal of Biological Chemistry.

[65]  B. Stocker,et al.  Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines , 1981, Nature.