17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells

We present here a planar perovskite solar cell with a stabilized power conversion efficiency (PCE) of 17.6% at the maximum power point and a PCE of 17% extracted from quasi-static J–V with an open-circuit voltage of 1.11 V. Such excellent figures of merit can be achieved by engineering a solution-processed electron buffer layer that does not require high temperature steps. A compact thin film of perovskite absorber is grown onto a PCBM-based electron extraction layer by implementing a novel two-step procedure which preserves the soluble organic interlayer during the deposition of successive layers. We demonstrate that efficient charge extraction is the key for high steady state efficiency in perovskite solar cells with a highly integrable architecture.

[1]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[2]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[3]  Henry J. Snaith,et al.  Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .

[4]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[5]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[6]  M. Green,et al.  Photovoltaics: Perovskite cells charge forward. , 2015, Nature materials.

[7]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[8]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[9]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[10]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[11]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[12]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[13]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[14]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[15]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[16]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[17]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[18]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[19]  Edward H. Sargent,et al.  A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .

[20]  E. Mosconi,et al.  First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine. , 2014, The journal of physical chemistry letters.

[21]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[22]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[23]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[24]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[25]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[26]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[27]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[28]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[29]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[30]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[31]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.