Radar Target Parameter Estimation with Array Antennas

The final processing in a radar reception chain is the estimation of target parameters. These estimates are then displayed, or further processed, by a radar data processor. The quality of the estimated parameters depends not only on the algorithm used, but also on the whole hardware and signal processing employed. The question as to how to do radar parameter estimation is indeed very complex, and not simply a matter of choosing some algorithm. Many publications are available on this problem, starting with the classic Radar Handbook of Skolnik [3.1].

[1]  W. Gordon,et al.  Improved Three Subaperture Method for Elevation Angle Estimation , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[3]  U. Nickel,et al.  Angle estimation with adaptive arrays and its relation to super-resolution , 1987 .

[4]  U. Nickel Algebraic formulation of Kumaresan-Tufts superresolution method, showing relation to ME and MUSIC methods , 1988 .

[5]  Ulrich Nickel,et al.  Subarray configurations for interference suppression with phased array radar , 1989 .

[6]  Yoram Bresler,et al.  On the number of signals resolvable by a uniform linear array , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  Range Resolution of Targets , 1984, IEEE Transactions on Aerospace and Electronic Systems.

[8]  D. H. Brandwood,et al.  Noise-space projection: MUSIC without eigenvectors , 1987 .

[9]  Johann F. Böhme,et al.  On least squares methods for direction of arrival estimation in the presence of unknown noise fields , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[10]  Simon Haykin,et al.  Performance evaluation of the modified FBLP method for angle of arrival estimation using real radar multipath data , 1985 .

[11]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[12]  E. Brookner,et al.  Adaptive-adaptive array processing , 1986, Proceedings of the IEEE.

[13]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[14]  Benjamin Friedlander,et al.  Analysis of the asymptotic relative efficiency of the MUSIC algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[16]  W. D. Wirth Signal processing for target detection in experimental phased-array radar ELRA , 1981 .

[17]  Franklin T. Luk,et al.  The Solution Of Singular Value Problems Using Systolic Arrays , 1984, Optics & Photonics.

[18]  Eric Hung,et al.  A Fast Beamforming Algorithm for Large Arrays , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[19]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[20]  Robert Schreiber Implementation Of Eigenvector Methods , 1984, Optics & Photonics.

[21]  Y. T. Chan Underwater Acoustic Data Processing , 1989 .

[22]  Jeffrey M. Speiser Some Observations Concerning The ESPRIT Direction Finding Method , 1988, Optics & Photonics.

[23]  S. Haykin,et al.  Maximum-likelihood receiver for low-angle tracking radar. Part 2: The nonsymmetric case , 1982 .

[24]  L. Marple A new autoregressive spectrum analysis algorithm , 1980 .

[25]  J. Litva,et al.  Very low-level propagation studies using superresolution and synthetic-aperture antenna techniques , 1987, 1987 Antennas and Propagation Society International Symposium.

[26]  J. G. McWhirter,et al.  Recursive Least-Squares Minimization Using A Systolic Array , 1983, Optics & Photonics.

[27]  W. Gabriel,et al.  Using spectral estimation techniques in adaptive processing antenna systems , 1985 .

[28]  Ulrich Nickel Superresolution using an active antenna array , 1982 .

[29]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Simon Haykin,et al.  Evaluation of angle of arrival estimators using real multipath data , 1983, ICASSP.

[31]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[32]  Chien-Chung Yeh,et al.  Projection approach to bearing estimations , 1986, IEEE Trans. Acoust. Speech Signal Process..

[33]  Robert B. McGhee,et al.  A Decision Theoretic Approach to the Angular Resolution and Parameter Estimation Problem for Multiple Targets , 1968, IEEE Transactions on Aerospace and Electronic Systems.

[34]  V. Pisarenko On the Estimation of Spectra by Means of Non-linear Functions of the Covariance Matrix , 1972 .

[35]  Bede Liu,et al.  On resolving two-dimensional sinusoids in white noise using different spectral estimates , 1988, IEEE Trans. Acoust. Speech Signal Process..

[36]  Rama Chellappa,et al.  A model-based approach for estimation of two-dimensional maximum entropy power spectra , 1985, IEEE Trans. Inf. Theory.

[37]  J. Litva,et al.  New angle-of-arrival estimator: comparative evaluation applied to the low-angle tracking radar problem , 1988 .

[38]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[39]  Thomas Kailath,et al.  Comparative performance of ESPRIT and MUSIC for direction-of-arrival estimation , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[40]  G. W. Lank,et al.  Angular Tracking of Two Closely Spaced Radar Targets , 1968, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Simon Haykin,et al.  Multi-Frequency Angle-Of-Arrival Estimation: An Experimental Evaluation , 1988, Optics & Photonics.

[42]  S. Unnikrishna Pillai,et al.  Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..

[43]  T. Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[44]  R. D. DeGroat,et al.  Highly Parallel Eigenvector Update Methods With Applications To Signal Processing , 1986, Optics & Photonics.

[45]  Roger K. Moore,et al.  Royal Signals and Radar Establishment , 1983 .

[46]  Anthony J. Weiss,et al.  Maximum likelihood array processing for the estimation of superimposed signals , 1988, Proc. IEEE.

[47]  Juha Karhunen,et al.  Adaptive algorithms for estimating eigenvectors of correlation type matrices , 1984, ICASSP.

[48]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[49]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[50]  G. Borgiotti,et al.  Superresolution of uncorrelated interference sources by using adaptive array techniques , 1979 .

[51]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[52]  Paruchuri R. Krishnaiah,et al.  On the use of autoregressive order determination criteria in univariate white noise tests , 1988, IEEE Trans. Acoust. Speech Signal Process..

[53]  D. R. Farrier,et al.  Theoretical performance prediction of the MUSIC algorithm , 1988 .

[54]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[55]  J. F. Böhme,et al.  Estimation of spectral parameters of correlated signals in wavefields , 1986 .

[56]  R. Kashyap Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .

[57]  R.L. Johnson,et al.  Comparison of Superresolution Algorithms for Radio Direction Finding , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[58]  James A. Cadzow,et al.  General direction-of-arrival estimation: a signal subspace approach , 1989 .

[59]  J. Hudson Decomposition of antenna signals into plane waves , 1985 .