Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes

[1]  Q. Li,et al.  Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries , 2013 .

[2]  Bin Liu,et al.  Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries , 2013, Scientific Reports.

[3]  Chaojiang Niu,et al.  Substrate-assisted self-organization of radial β-AgVO₃ nanowire clusters for high rate rechargeable lithium batteries. , 2012, Nano letters.

[4]  D. Zhao,et al.  Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. , 2012, Angewandte Chemie.

[5]  Jaephil Cho,et al.  Self-assembled germanium/carbon nanostructures as high-power anode material for the lithium-ion battery. , 2012, Angewandte Chemie.

[6]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[7]  B. Liu,et al.  ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts , 2012 .

[8]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[9]  Yadong Li,et al.  Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries , 2012, Nano Research.

[10]  Di Chen,et al.  Highly ordered TiO 2 macropore arrays as transparent photocatalysts , 2012 .

[11]  Chongwu Zhou,et al.  Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage. , 2011, ACS nano.

[12]  G. Shen,et al.  Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. , 2011, ACS nano.

[13]  D. Deng,et al.  Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage , 2011, Nanotechnology.

[14]  Yi Cui,et al.  Transparent lithium-ion batteries , 2011, Proceedings of the National Academy of Sciences.

[15]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[16]  Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates: High‐Performance Anode Materials of Li‐Ion Batteries. , 2011 .

[17]  Deren Yang,et al.  Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. , 2011, Inorganic chemistry.

[18]  H. Ahn,et al.  Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance , 2010, Advanced materials.

[19]  Bruno Scrosati,et al.  An advanced lithium ion battery based on high performance electrode materials. , 2011, Journal of the American Chemical Society.

[20]  辛森,et al.  Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries , 2011 .

[21]  Xiaogang Zhang,et al.  Lysine-assisted hydrothermal synthesis of urchin-like ordered arrays of mesoporous Co(OH)2 nanowires and their application in electrochemical capacitors , 2010 .

[22]  L. Nazar,et al.  Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. , 2010, Angewandte Chemie.

[23]  Yadong Li,et al.  LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries , 2010 .

[24]  C. Wong,et al.  Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. , 2010, ACS nano.

[25]  Weishan Li,et al.  A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries , 2010 .

[26]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[27]  Philipp Adelhelm,et al.  Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries , 2009 .

[28]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[29]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[30]  L. Archer,et al.  Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. , 2008 .

[31]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[32]  Jiayan Luo,et al.  Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability , 2007 .

[33]  G. Campet,et al.  Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins , 2007 .

[34]  B. Chowdari,et al.  Nanophase ZnCo2O4 as a High Performance Anode Material for Li‐Ion Batteries , 2007 .

[35]  Bruno Scrosati,et al.  Nanomaterials: Paper powers battery breakthrough. , 2007, Nature nanotechnology.

[36]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[37]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[38]  C. Feng,et al.  Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. , 2006, Inorganic chemistry.

[39]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[40]  Raouf O. Loutfy,et al.  Comparative studies of MCMB and CC composite as anodes for lithium-ion battery systems , 2003 .

[41]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[42]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.