Problems and Results in Matrix Perturbation Theory

The perturbation theory is important in applications and theoretical investigations as well. Here we investigate three groups of perturbation problems which are related to computational methods of importance. The first section is related to the solution of linear systems of equations and a posteriori error estimates of the computed solution. The second section gives optimal bounds for the perturbations of LU factorizations. The final section gives a sharp upper bound for the eigenvalue perturbation of general matrices, which is better than the classical result of Ostrowski. We also show two applications of this result. The first application gives a sharp perturbation bound for the zeros of polynomials. The second application is related to a result of Edelman and Murakami on the backward stability of companion matrix type polynomial solvers.

[1]  Rajendra Bhatia,et al.  Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix , 1990 .

[2]  Giles Auchmuty,et al.  A posteriori error estimates for linear equations , 1992 .

[3]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[4]  G. Stewart,et al.  New perturbation analyses for the Cholesky factorization , 1996 .

[5]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[6]  K. Chu,et al.  Generalization of the Bauer-Fike theorem , 1986 .

[7]  Siegfried M. Rump A class of arbitrarily ill conditioned floating-point matrices , 1991 .

[8]  Aurél Galántai,et al.  Perturbation bounds for polynomials , 2008, Numerische Mathematik.

[9]  V. Prasolov Problems and theorems in linear algebra , 1994 .

[10]  G. Stewart On the perturbation of LU and Cholesky factors , 1997 .

[11]  A. Galántai A study of Auchmuty's error estimate , 2001 .

[12]  A. Galántai,et al.  Hyman's method revisited , 2009 .

[13]  A. Galántai Perturbations of Triangular Matrix Factorizations , 2003 .

[14]  Z. Drmač,et al.  On the Perturbation of the Cholesky Factorization , 1994 .

[15]  W. Kahan Conserving Confluence Curbs Ill-Condition , 1972 .

[16]  Alexandre Ostrowski Recherches sur la méthode de graeffe et les zéros des polynomes et des séries de laurent , 1940 .

[17]  Xiao-Wen Chang,et al.  Sensitivity analyses for factorizations of sparse or structured matrices , 1998 .

[18]  Tosio Kato Perturbation theory for linear operators , 1966 .

[19]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  W. Kahan Numerical Linear Algebra , 1966, Canadian Mathematical Bulletin.

[22]  G. Stewart On the perturbation of LU, Cholesky, and QR factorizations , 1993 .

[23]  R. Bhatia Matrix factorizations and their perturbations , 1994 .

[24]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[25]  H. Baumgärtel Analytic perturbation theory for matrices and operators , 1985 .

[26]  L. Hogben Handbook of Linear Algebra , 2006 .

[27]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[28]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[29]  Ji-guang Sun,et al.  Rounding-error and perturbation bounds for the Cholesky and LDL T factorizations , 1991 .

[30]  R. Bhatia Perturbation Bounds for Matrix Eigenvalues , 2007 .

[31]  Xiao-Wen Chang,et al.  On the sensitivity of the LU factorization , 1998 .

[32]  A. Barrlund Perturbation bounds for theLDLH andLU decompositions , 1991 .

[33]  Y. Nievergelt Numerical linear algebra on the HP-28 or how to lie with supercalculators , 1991 .

[34]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[35]  B. Beauzamy How the Roots of a Polynomial Vary with its Coefficients: A Local Quantitative Result , 1999, Canadian Mathematical Bulletin.

[36]  Perturbation bounds for triangular and full rank factorizations , 2005 .

[37]  Ji-guang Sun Componentwise perturbation bounds for some matrix decompositions , 1992 .

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  Componentwise perturbation bounds for the LU, LDU and LDT -T decompositions , 2000 .

[40]  James Demmel,et al.  On the Complexity of Computing Error Bounds , 2001, Found. Comput. Math..

[41]  Ji-guang Sun Perturbation bounds for the Cholesky andQR factorizations , 1991 .

[42]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .