Induction of E6AP by microRNA-302c dysregulation inhibits TGF-β-dependent fibrogenesis in hepatic stellate cells

[1]  Ja Hyun Koo,et al.  Gα12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. , 2018, Journal of hepatology.

[2]  Guanqun Huang,et al.  Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. , 2018, Biochimica et biophysica acta. Molecular cell research.

[3]  S. Fox,et al.  E6AP promotes prostate cancer by reducing p27 expression , 2017, Oncotarget.

[4]  Jian Liang,et al.  Modulation of hepatic stellate cells and reversibility of hepatic fibrosis , 2017, Experimental cell research.

[5]  D. Brenner,et al.  Recent advancement of molecular mechanisms of liver fibrosis , 2015, Journal of hepato-biliary-pancreatic sciences.

[6]  L. Banks,et al.  Angelman syndrome-associated ubiquitin ligase UBE3A/E6AP mutants interfere with the proteolytic activity of the proteasome , 2015, Cell Death and Disease.

[7]  J. Kench,et al.  Expression of E6AP and PML predicts for prostate cancer progression and cancer-specific death. , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[8]  G. Piazza,et al.  MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells , 2013, Acta Pharmacologica Sinica.

[9]  K. Jeong,et al.  JNK1 and JNK2 regulate α‐SMA in hepatic stellate cells during CCl4‐induced fibrosis in the rat liver , 2013, Pathology international.

[10]  Y. Haupt,et al.  The E6AP E3 ubiquitin ligase regulates the cellular response to oxidative stress , 2013, Oncogene.

[11]  W. Wahli,et al.  GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation , 2012, Cell & Bioscience.

[12]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[13]  Y. Haupt,et al.  E6AP is required for replicative and oncogene-induced senescence in mouse embryo fibroblasts , 2012, Oncogene.

[14]  F. Tacke,et al.  Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques , 2012, Expert review of gastroenterology & hepatology.

[15]  Yujing Sun,et al.  The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition , 2012, Journal of signal transduction.

[16]  C. Gandhi,et al.  Roles of microRNA-29a in the Antifibrotic Effect of Farnesoid X Receptor in Hepatic Stellate Cells , 2011, Molecular Pharmacology.

[17]  H. Bonkovsky,et al.  microRNAs: fad or future of liver disease. , 2011, World journal of gastroenterology.

[18]  S. Friedman,et al.  E3 Ubiquitin Ligase Synoviolin Is Involved in Liver Fibrogenesis , 2010, PloS one.

[19]  H. Hotta,et al.  E6AP ubiquitin ligase mediates ubiquitin‐dependent degradation of peroxiredoxin 1 , 2010, Journal of cellular biochemistry.

[20]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[21]  Sang -Geon Kim,et al.  Role of adenosine monophosphate‐activated protein kinase–p70 ribosomal S6 kinase‐1 pathway in repression of liver X receptor‐alpha–dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones , 2009, Hepatology.

[22]  Bo Liu,et al.  miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. , 2009, Journal of hepatology.

[23]  I. Cho,et al.  The gep oncogenes, Gα12 and Gα13, upregulate the transforming growth factor-β1 gene , 2009, Oncogene.

[24]  Yizheng Wang,et al.  Opposing Roles for ATF2 and c-Fos in c-Jun-Mediated Neuronal Apoptosis , 2009, Molecular and Cellular Biology.

[25]  Guangcun Huang,et al.  Over‐expressed microRNA‐27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation , 2009, FEBS letters.

[26]  M. Scheffner,et al.  Ubiquitin ligase E6-AP and its role in human disease. , 2008, Biochemical Society transactions.

[27]  D. Rockey,et al.  Divergent transforming growth factor-beta signaling in hepatic stellate cells after liver injury: functional effects on ECE-1 regulation. , 2008, The American journal of pathology.

[28]  Youhua Liu,et al.  Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. , 2008, American journal of physiology. Renal physiology.

[29]  Y. Ke,et al.  E3 ubiquitin ligase E6AP‐mediated TSC2 turnover in the presence and absence of HPV16 E6 , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[30]  Yuqiong Liang,et al.  Hepatitis C Virus Induces E6AP-Dependent Degradation of the Retinoblastoma Protein , 2007, PLoS pathogens.

[31]  M. Fujita,et al.  HPV16 E6-mediated stabilization of ErbB2 in neoplastic transformation of human cervical keratinocytes , 2007, Oncogene.

[32]  Xiaoping Zhang,et al.  MG-132 Sensitizes TRAIL-Resistant Prostate Cancer Cells by Activating c-Fos/c-Jun Heterodimers and Repressing c-FLIP(L) , 2007 .

[33]  A. Goldberg,et al.  Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. , 2006, Journal of the American Society of Nephrology : JASN.

[34]  Weimin Guo,et al.  Ubiquitin-proteasome pathway function is required for lens cell proliferation and differentiation. , 2006, Investigative ophthalmology & visual science.

[35]  M. Kitagawa,et al.  Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Attisano,et al.  Regulation of the TGFβ signalling pathway by ubiquitin-mediated degradation , 2004, Oncogene.

[37]  J. Rothnagel,et al.  Regulation of MAPK activation, AP-1 transcription factor expression and keratinocyte differentiation in wounded fetal skin. , 2004, The Journal of investigative dermatology.

[38]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[39]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[40]  M. Cairns,et al.  E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes , 2003, Cancer Gene Therapy.

[41]  J. Jaffrezou,et al.  p38 MAPK mediates the regulation of α1(I) procollagen mRNA levels by TNF‐α and TGF‐β in a cell line of rat hepatic stellate cells 1 , 2002 .

[42]  S. Dooley,et al.  Roles of TGF-beta in hepatic fibrosis. , 2002, Frontiers in bioscience : a journal and virtual library.

[43]  D. Brenner,et al.  TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells , 2001, Hepatology.

[44]  D. Roulot,et al.  Transforming growth factor β and the liver , 2001 .

[45]  Tomoki Chiba,et al.  Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation* , 2001, The Journal of Biological Chemistry.

[46]  A. Ciechanover,et al.  Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[48]  E. Zandi,et al.  AP-1 function and regulation. , 1997, Current opinion in cell biology.

[49]  M. Karin,et al.  The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. , 1991, Biochimica et biophysica acta.

[50]  W. Wahli,et al.  GW501516-activated PPARbeta/delta promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation , 2019 .

[51]  Ja Hyun Koo,et al.  Endoplasmic Reticulum Stress in Hepatic Stellate Cells Promotes Liver Fibrosis via PERK-Mediated Degradation of HNRNPA1 and Up-regulation of SMAD2. , 2016, Gastroenterology.

[52]  Byung-Hyun Park,et al.  Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. , 2015, Free radical biology & medicine.

[53]  R. Schwabe,et al.  Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. , 2010, Gastroenterology.

[54]  Ying E Zhang,et al.  Non-Smad pathways in TGF-β signaling , 2009, Cell Research.

[55]  S. Friedman Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. , 2008, Physiological reviews.

[56]  R. Derynck,et al.  Smad-dependent and Smad-independent pathways in TGF-beta family signalling. , 2003, Nature.

[57]  M. Varela-Rey,et al.  p38 MAPK mediates the regulation of alpha1(I) procollagen mRNA levels by TNF-alpha and TGF-beta in a cell line of rat hepatic stellate cells(1). , 2002, FEBS letters.

[58]  D M Bissell,et al.  Transforming growth factor beta and the liver. , 2001, Hepatology.

[59]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[60]  S. Friedman Cytokines and Fibrogenesis , 1999, Seminars in liver disease.

[61]  P. Vogt,et al.  jun: oncogene and transcription factor. , 1990, Advances in cancer research.