Numerical Evauation of Effect of Atmospheric Turbulence on Sonic Boom Observed in D-SEND#2 Flight Test

[1]  Takashi Yamane,et al.  The Development of the UPACS CFD Environment , 2003, ISHPC.

[2]  Bart Lipkens,et al.  A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models. , 2002, The Journal of the Acoustical Society of America.

[3]  O. S Ryshov,et al.  On the energy of acoustic waves propagating in moving media , 1962 .

[4]  François Coulouvrat,et al.  Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation. , 2011, The Journal of the Acoustical Society of America.

[5]  Philippe Blanc-Benon,et al.  Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation. , 2002, The Journal of the Acoustical Society of America.

[6]  Kazuhiro Nakahashi,et al.  Some challenges of realistic flow simulations by unstructured grid CFD , 2003 .

[7]  Atsushi Hashimoto,et al.  A unified approach to an augmented Burgers equation for the propagation of sonic booms. , 2015, The Journal of the Acoustical Society of America.

[8]  Bart Lipkens,et al.  Model experiment to study sonic boom propagation through turbulence. Part I: General results , 1998 .

[9]  Allan D. Pierce,et al.  Statistical Theory of Atmospheric Turbulence Effects on Sonic‐Boom Rise Times , 1971 .

[10]  Robin O Cleveland,et al.  Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media. , 2011, The Journal of the Acoustical Society of America.

[11]  Domenic J. Maglieri,et al.  Effects of atmospheric irregularities on sonic-boom propagation. , 1972 .

[12]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[13]  Victor W. Sparrow,et al.  Solution of the Lossy Nonlinear Tricomi Equation Applied to Sonic Boom Focusing , 2013 .

[14]  Juliet Page,et al.  An efficient method for incorporating computational fluid dynamics into sonic boom prediction , 1991 .

[15]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .