Efficient Integration of Sufficient Dimension Reduction and Prediction in Discriminant Analysis

ABSTRACT Sufficient dimension reduction (SDR) methods are popular model-free tools for preprocessing and data visualization in regression problems where the number of variables is large. Unfortunately, reduce-and-classify approaches in discriminant analysis usually cannot guarantee improvement in classification accuracy, mainly due to the different nature of the two stages. On the other hand, envelope methods construct targeted dimension reduction subspaces that achieve dimension reduction and improve parameter estimation efficiency at the same time. However, little is known about how to construct envelopes in discriminant analysis models. In this article, we introduce the notion of the envelope discriminant subspace (ENDS) as a natural inferential and estimative object in discriminant analysis that incorporates these considerations. We develop the ENDS estimators that simultaneously achieve sufficient dimension reduction and classification. Consistency and asymptotic normality of the ENDS estimators are established, where we carefully examine the asymptotic efficiency gain under the classical linear and quadratic discriminant analysis models. Simulations and real data examples show superb performance of the proposed method. Supplementary materials for this article are available online.

[1]  Yu Zhu,et al.  Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression , 2006 .

[2]  R. Dennis Cook,et al.  Foundations for Envelope Models and Methods , 2015 .

[3]  Andreas Artemiou,et al.  Using sliced inverse mean difference for sufficient dimension reduction , 2015 .

[4]  Kshitij Khare,et al.  A Bayesian approach for envelope models , 2017 .

[5]  Yingxing Li,et al.  On hybrid methods of inverse regression-based algorithms , 2007, Comput. Stat. Data Anal..

[6]  R. Cook,et al.  Theory & Methods: Special Invited Paper: Dimension Reduction and Visualization in Discriminant Analysis (with discussion) , 2001 .

[7]  Shaoli Wang,et al.  On Directional Regression for Dimension Reduction , 2007 .

[8]  Inge S. Helland,et al.  Envelopes and partial least squares regression , 2013 .

[9]  Douglas M. Hawkins,et al.  Smoothed Linear Modeling for Smooth Spectral Data , 2013 .

[10]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[11]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[12]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[13]  Xuming He,et al.  Dimension reduction based on constrained canonical correlation and variable filtering , 2008, 0808.0977.

[14]  James R. Schott Dimensionality reduction in quadratic discriminant analysis , 1993 .

[15]  Yufeng Liu,et al.  Principal weighted support vector machines for sufficient dimension reduction in binary classification , 2017, Biometrika.

[16]  R. Weiss,et al.  Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods , 2003 .

[17]  Xin Zhang,et al.  Parsimonious Tensor Response Regression , 2015, 1501.07815.

[18]  Bing Li,et al.  ENVELOPE MODELS FOR PARSIMONIOUS AND EFFICIENT MULTIVARIATE LINEAR REGRESSION , 2010 .

[19]  Liping Zhu,et al.  A Semiparametric Approach to Dimension Reduction , 2012, Journal of the American Statistical Association.

[20]  B. Li,et al.  Dimension reduction for nonelliptically distributed predictors , 2009, 0904.3842.

[21]  H. Akaike A new look at the statistical model identification , 1974 .

[22]  Xin Zhang,et al.  Tensor Envelope Partial Least-Squares Regression , 2017, Technometrics.

[23]  R. Cook,et al.  Sufficient Dimension Reduction via Inverse Regression , 2005 .

[24]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[25]  R. Dennis Cook,et al.  Graphical Tools for Quadratic Discriminant Analysis , 2007, Technometrics.

[26]  B. Efron The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis , 1975 .

[27]  Bing Li,et al.  Dimension reduction in regression without matrix inversion , 2007 .

[28]  J. Saracco,et al.  AN ASYMPTOTIC THEORY FOR SIRα METHOD , 2003 .

[29]  Yufeng Liu,et al.  Probability-enhanced sufficient dimension reduction for binary classification. , 2014, Biometrics.

[30]  A. U.S.,et al.  Partial Envelopes for Efficient Estimation in Multivariate Linear Regression , 2010 .

[31]  Lixing Zhu,et al.  Dimension Reduction in Regressions Through Cumulative Slicing Estimation , 2010 .

[32]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[33]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[34]  Xiangrong Yin,et al.  Sufficient Dimension Reduction and Variable Selection for Large-p-Small-n Data With Highly Correlated Predictors , 2017 .

[35]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[36]  Xin Zhang,et al.  Simultaneous Envelopes for Multivariate Linear Regression , 2015, Technometrics.

[37]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[38]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[39]  R. Cook,et al.  Fused Estimators of the Central Subspace in Sufficient Dimension Reduction , 2014 .

[40]  Yingcun Xia,et al.  Sliced Regression for Dimension Reduction , 2008 .

[41]  D. Hand,et al.  Idiot's Bayes—Not So Stupid After All? , 2001 .

[42]  Qing Mai,et al.  Model-free Envelope Dimension Selection , 2017 .

[43]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[44]  Heng-Hui Lue Discussion of "Envelope models for parsimonious and efficient multivariate linear regression" , 2010 .

[45]  R. Dennis Cook,et al.  Principal Components, Sufficient Dimension Reduction, and Envelopes , 2018 .

[46]  R. Dennis Cook,et al.  Algorithms for Envelope Estimation , 2016 .

[47]  Liping Zhu,et al.  A Review on Dimension Reduction , 2013, International statistical review = Revue internationale de statistique.

[48]  Yichao Wu,et al.  Probability-enhanced effective dimension reduction for classifying sparse functional data , 2016 .

[49]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[50]  Liping Zhu,et al.  On estimation efficiency of the central mean subspace , 2014 .

[51]  R. Christensen,et al.  Fisher Lecture: Dimension Reduction in Regression , 2007, 0708.3774.

[52]  J. Friedman Regularized Discriminant Analysis , 1989 .

[53]  R. Cook,et al.  Likelihood-Based Sufficient Dimension Reduction , 2009 .