Towards applications of particle filters in wildfire spread simulation

Wildfire propagation is a complex process influenced by many factors. Simulation models of wildfire spread, such as DEVS-FIRE, are important tools for studying fire behavior. This paper presents how the sequential Monte Carlo methods, i.e., particle filters, can work together with DEVS-FIRE for better simulation and prediction of wildfire. We define an application framework of particle filters for the problem of wildfire spread using the DEVSFIRE model, and discuss several applications. A case study example is provided and preliminary results are presented.

[1]  W. Ames Mathematics in Science and Engineering , 1999 .

[2]  Yalchin Efendiev,et al.  DDDAS Approaches to Wildland Fire Modeling and Contaminant Tracking , 2006, Proceedings of the 2006 Winter Simulation Conference.

[3]  Justin M. Bradley,et al.  Particle Filter Based Mosaicking for Forest Fire Tracking , 2007 .

[4]  B. P. Ziegler,et al.  Theory of Modeling and Simulation , 1976 .

[5]  Nils Christophersen,et al.  Monte Carlo filters for non-linear state estimation , 2001, Autom..

[6]  Rong Chen,et al.  Monte Carlo Bayesian Signal Processing for Wireless Communications , 2002, J. VLSI Signal Process..

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Guan Qin,et al.  A WILDLAND FIRE DYNAMIC DATA-DRIVEN APPLICATION SYSTEM , 2006 .

[9]  Thomas B. Schön,et al.  Estimation of Nonlinear Dynamic Systems : Theory and Applications , 2006 .

[10]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[11]  Clark N. Taylor,et al.  Particle Filter Based Mosaicking For Tracking Forest Fires , 2007 .

[12]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[13]  Jeroen D. Hol,et al.  Resampling in particle filters , 2004 .

[14]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[15]  Jonathan D. Beezley,et al.  A wildland fire model with data assimilation , 2007, Math. Comput. Simul..

[16]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[17]  Xiaolin Hu,et al.  DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and Containment , 2008, Simul..

[18]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[19]  M. Simandl,et al.  Sampling Densities of Particle Filter: A Survey and Comparison , 2007, 2007 American Control Conference.

[20]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[21]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[22]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[23]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[24]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[25]  Jie Liang,et al.  Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers , 2003, cond-mat/0301085.