Rough filters based on residuated lattices

[1]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[2]  Saeed Rasouli,et al.  Characterization of a New Subquasivariety of Residuated Lattice , 2018, FLAP.

[3]  Davide Ciucci,et al.  Rough Sets , 1995, Lecture Notes in Computer Science.

[4]  Saeed Rasouli,et al.  PMTL Filters, Rℓ Filters and PBL Filters in Residuated Lattices , 2017, J. Multiple Valued Log. Soft Comput..

[5]  Bijan Davvaz,et al.  An investigation on Boolean prime filters in BL-algebras , 2015, Soft Comput..

[6]  Georg Struth,et al.  Residuated Lattices , 1938, Arch. Formal Proofs.

[7]  Qingguo Li,et al.  Rough sets induced by ideals in lattices , 2014, Inf. Sci..

[8]  B. Davvaz,et al.  An Investigation on Algebraic Structure of Soft Sets and Soft Filters over Residuated Lattices , 2014 .

[9]  Bijan Davvaz,et al.  Some properties of generalized rough sets , 2013, Inf. Sci..

[10]  Jirí Rachunek,et al.  Roughness in Residuated Lattices , 2012, IPMU.

[11]  Lida Torkzadeh,et al.  Rough Filters in BL-Algebras , 2011, Int. J. Math. Math. Sci..

[12]  Chris Cornelis,et al.  Filters of residuated lattices and triangle algebras , 2010, Inf. Sci..

[13]  Bijan Davvaz,et al.  Soft sets combined with fuzzy sets and rough sets: a tentative approach , 2010, Soft Comput..

[14]  Bijan Davvaz,et al.  Generalized lower and upper approximations in a ring , 2010, Inf. Sci..

[15]  Bijan Davvaz,et al.  Roughness in MV-algebras , 2010, Inf. Sci..

[16]  L. Ciungu DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES , 2009 .

[17]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[18]  Dexue Zhang,et al.  Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory , 2009, Int. J. Approx. Reason..

[19]  B. Ganter Formal Concept Analysis , 2009, Lecture Notes in Computer Science.

[20]  Bijan Davvaz,et al.  A short note on algebraic T , 2008, Inf. Sci..

[21]  Li Kaitai,et al.  Boolean filters and positive implicative filters of residuated lattices , 2007 .

[22]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[23]  Bijan Davvaz,et al.  Roughness in modules , 2006, Inf. Sci..

[24]  Anatolij Dvurecenskij,et al.  Probabilistic Averaging in Bounded Rℓ-Monoids , 2006 .

[25]  Lavinia Corina Ciungu,et al.  Classes of residuated lattices , 2006 .

[26]  Dumitru Busneag,et al.  On The Lattice of Filters of A Pseudo-BL Algebra , 2006, J. Multiple Valued Log. Soft Comput..

[27]  Bijan Davvaz,et al.  Roughness in rings , 2004, Inf. Sci..

[28]  Yiyu Yao,et al.  A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis , 2004, Rough Sets and Current Trends in Computing.

[29]  George Georgescu,et al.  Bosbach states on fuzzy structures , 2004, Soft Comput..

[30]  Gianpiero Cattaneo,et al.  Algebraic Structures for Rough Sets , 2004, Trans. Rough Sets.

[31]  C. Tsinakis,et al.  Cancellative residuated lattices , 2003 .

[32]  Constantine Tsinakis,et al.  The Structure of Residuated Lattices , 2003, Int. J. Algebra Comput..

[33]  H. Ono Substructural Logics and Residuated Lattices — an Introduction , 2003 .

[34]  Ivo Düntsch,et al.  Modal-style operators in qualitative data analysis , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[35]  Wen-Xiu Zhang,et al.  The Lower and Upper Approximations of Fuzzy Sets in a Fuzzy Group , 2002, AFSS.

[36]  C. Tsinakis,et al.  A Survey of Residuated Lattices , 2002 .

[37]  George Georgescu,et al.  Pseudo-t-norms and pseudo-BL algebras , 2001, Soft Comput..

[38]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[39]  W. Krull,et al.  Axiomatische Begründung der allgemeinen Idealtheorie [5] , 1999 .

[40]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[41]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[42]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[43]  Urszula Wybraniec-Skardowska,et al.  Extensions and Intentions in the Ruogh Set Theory , 1998, Inf. Sci..

[44]  Nobuaki Kuroki,et al.  Rough Ideals in Semigroups , 1997, Inf. Sci..

[45]  Marcel Erné,et al.  A Primer on Galois Connections , 1993 .

[46]  Zbigniew Bonikowski,et al.  Algebraic Structures of Rough Sets , 1993, RSKD.

[47]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[48]  J. A. Pomykala,et al.  The stone algebra of rough sets , 1988 .

[49]  T. Iwiński Algebraic approach to rough sets , 1987 .

[50]  A. Ursini,et al.  Ideals in universal algebras , 1984 .

[51]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.