Self-selective van der Waals heterostructures for large scale memory array

[1]  Soo Min Kim,et al.  Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation , 2019, 2019 Compound Semiconductor Week (CSW).

[2]  Dong Wang,et al.  Selective growth of monolayer semiconductors for diverse synaptic junctions , 2018, 2D Materials.

[3]  Young Hee Lee,et al.  Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation , 2018, Science.

[4]  Yu Huang,et al.  Solution-processable 2D semiconductors for high-performance large-area electronics , 2018, Nature.

[5]  Eric Pop,et al.  Electronic synapses made of layered two-dimensional materials , 2018, Nature Electronics.

[6]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[7]  Rong Zhao,et al.  Synaptic Computation Enabled by Joule Heating of Single-Layered Semiconductors for Sound Localization. , 2018, Nano letters.

[8]  Chunsen Liu,et al.  A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications , 2018, Nature Nanotechnology.

[9]  Qi Liu,et al.  Resistive Switching: Breaking the Current‐Retention Dilemma in Cation‐Based Resistive Switching Devices Utilizing Graphene with Controlled Defects (Adv. Mater. 14/2018) , 2018 .

[10]  Qi Liu,et al.  Breaking the Current‐Retention Dilemma in Cation‐Based Resistive Switching Devices Utilizing Graphene with Controlled Defects , 2018, Advanced materials.

[11]  A. Ranjan,et al.  Conductive Atomic Force Microscope Study of Bipolar and Threshold Resistive Switching in 2D Hexagonal Boron Nitride Films , 2018, Scientific Reports.

[12]  Myungsoo Kim,et al.  Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. , 2018, Nano letters.

[13]  M. Chhowalla,et al.  Structural and quantum-state phase transitions in van der Waals layered materials , 2017, Nature Physics.

[14]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[15]  P. Ajayan,et al.  Two-dimensional non-volatile programmable p-n junctions. , 2017, Nature nanotechnology.

[16]  J. Yang,et al.  Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors , 2017, Nature Communications.

[17]  Xu Xu,et al.  Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage , 2017, Science.

[18]  R. Waser,et al.  Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride , 2017 .

[19]  Catherine E. Graves,et al.  Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. , 2016, Nano letters.

[20]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[21]  Rakesh Aluguri,et al.  Overview of Selector Devices for 3-D Stackable Cross Point RRAM Arrays , 2016, IEEE Journal of the Electron Devices Society.

[22]  Rino Micheloni,et al.  3D Flash Memories , 2016, Springer Netherlands.

[23]  Guofa Cai,et al.  Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications , 2016 .

[24]  Kenji Watanabe,et al.  Supplemental note : Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride , 2015 .

[25]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[26]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[27]  Li Ji,et al.  Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. , 2014, Nano letters.

[28]  Kenji Watanabe,et al.  Strong oxidation resistance of atomically thin boron nitride nanosheets. , 2014, ACS nano.

[29]  Yongsung Ji,et al.  Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture , 2013, Nature Communications.

[30]  Mircea R. Stan,et al.  Modeling Power Consumption of NAND Flash Memories Using FlashPower , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[31]  Tuo-Hung Hou,et al.  Dependence of Read Margin on Pull-Up Schemes in High-Density One Selector–One Resistor Crossbar Array , 2013, IEEE Transactions on Electron Devices.

[32]  Yuchao Yang,et al.  Complementary resistive switching in tantalum oxide-based resistive memory devices , 2012, 1204.3515.

[33]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[34]  A. Jen,et al.  All‐Organic Photopatterned One Diode‐One Resistor Cell Array for Advanced Organic Nonvolatile Memory Applications (Adv. Mater. 6/2012) , 2012 .

[35]  Hong Ma,et al.  All‐Organic Photopatterned One Diode‐One Resistor Cell Array for Advanced Organic Nonvolatile Memory Applications , 2012, Advanced materials.

[36]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[37]  P. Kim Graphene: Across the border. , 2010, Nature materials.

[38]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[39]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[40]  Gotthard Seifert,et al.  Vacancy migration in hexagonal boron nitride , 2007 .

[41]  D. Lodge Across the Border , 2019, My Journey Home.

[42]  Марк Уэллс Electric connecting device , 2004 .