Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension

The Vapnik-Chervonenkis dimension (in short, VC-dimension) of a graph is defined as the VC-dimension of the set system induced by the neighborhoods of its vertices. We show that every n-vertex graph with bounded VC-dimension contains a clique or an independent set of size at least e^{(log n)^{1 - o(1)}}. The dependence on the VC-dimension is hidden in the o(1) term. This improves the general lower bound, e^{c sqrt{log n}}, due to Erdos and Hajnal, which is valid in the class of graphs satisfying any fixed nontrivial hereditary property. Our result is almost optimal and nearly matches the celebrated Erdos-Hajnal conjecture, according to which one can always find a clique or an independent set of size at least e^{Omega(log n)}. Our results partially explain why most geometric intersection graphs arising in discrete and computational geometry have exceptionally favorable Ramsey-type properties. Our main tool is a partitioning result found by Lovasz-Szegedy and Alon-Fischer-Newman, which is called the "ultra-strong regularity lemma" for graphs with bounded VC-dimension. We extend this lemma to k-uniform hypergraphs, and prove that the number of parts in the partition can be taken to be (1/epsilon)^{O(d)}, improving the original bound of (1/epsilon)^{O(d^2)} in the graph setting. We show that this bound is tight up to an absolute constant factor in the exponent. Moreover, we give an O(n^k)-time algorithm for finding a partition meeting the requirements in the k-uniform setting.

[1]  P. Varnavides,et al.  On Certain Sets of Positive Density , 1959 .

[2]  B. Szegedy,et al.  Regularity Partitions and The Topology of Graphons , 2010, 1002.4377.

[3]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[4]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[5]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[6]  T. Bohman The triangle-free process , 2008, 0806.4375.

[7]  P. Erdös Some remarks on the theory of graphs , 1947 .

[8]  D. Conlon,et al.  Hypergraph Ramsey numbers , 2008, 0808.3760.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Gerhard J. Woeginger,et al.  The VC-dimension of Set Systems Defined by Graphs , 1997, Discret. Appl. Math..

[11]  Colin Cooper,et al.  The vapnik-chervonenkis dimension of a random graph , 1995, Discret. Math..

[12]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[13]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[14]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[15]  Béla Bollobás,et al.  On a Ramsey-Turán type problem , 1976, Journal of combinatorial theory. Series B (Print).

[16]  JANOS BOLYAI,et al.  Some remarks on Ramsey ’ s and TurWs theorem , 2002 .

[17]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[18]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[19]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[20]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[21]  János Pach,et al.  Erdős–Hajnal Conjecture for Graphs with Bounded VC-Dimension , 2019, Discret. Comput. Geom..

[22]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[23]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[24]  R. C. Entringer,et al.  Some extremal properties concerning transitivity in graphs , 1973 .

[25]  M. Schaefer Deciding the VapnikCervonenkis Dimension is ? p 3 -complete , 1999 .

[26]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[27]  János Pach,et al.  Structure Theorems for Systems of Segments , 2000, JCDCG.

[28]  János Pach,et al.  A Ramsey-type result for convex sets , 1994 .

[29]  Endre Szemerédi,et al.  More results on Ramsey—Turán type problems , 1983, Comb..

[30]  János Pach,et al.  Ramsey-type results for semi-algebraic relations , 2014 .

[31]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[32]  János Pach,et al.  A Polynomial Regularity Lemma for Semialgebraic Hypergraphs and Its Applications in Geometry and Property Testing , 2015, SIAM J. Comput..

[33]  Noga Alon,et al.  Efficient Testing of Bipartite Graphs for Forbidden Induced Subgraphs , 2007, SIAM J. Comput..

[34]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[35]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[36]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[37]  A. Hajnal,et al.  Partition relations for cardinal numbers , 1965 .

[38]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[39]  R. Stanley Combinatorics and commutative algebra , 1983 .

[40]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[41]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[42]  Noga Alon,et al.  Ramsey-type Theorems with Forbidden Subgraphs , 2001, Comb..

[43]  Benny Sudakov,et al.  Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..

[44]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[45]  János Pach,et al.  Semi-algebraic colorings of complete graphs , 2015, SoCG.

[46]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[47]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[48]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[49]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[50]  Joel Spencer,et al.  Random regular tournaments , 1974 .

[51]  Paul Erdös,et al.  Ramsey-type theorems , 1989, Discret. Appl. Math..