On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms
暂无分享,去创建一个
Masoud Shariat Panahi | Ali Ahrari | Mohammad R. Saadatmand | Ali A. Atai | A. Atai | Mohammadsaleh Saadatmand | M. Panahi | A. Ahrari
[1] Godfrey C. Onwubolu,et al. New optimization techniques in engineering , 2004, Studies in Fuzziness and Soft Computing.
[2] Saku Kukkonen,et al. Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.
[3] Pedro J. Ballester,et al. Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX , 2005, 2005 IEEE Congress on Evolutionary Computation.
[4] Nikolaus Hansen,et al. On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.
[5] A. Kai Qin,et al. Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.
[6] Anne Auger,et al. Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.
[7] Thomas Stützle,et al. Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..
[8] David E. Goldberg,et al. Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..
[9] P. Pardalos,et al. Recent developments and trends in global optimization , 2000 .
[10] Carlos García-Martínez,et al. Hybrid real-coded genetic algorithms with female and male differentiation , 2005, 2005 IEEE Congress on Evolutionary Computation.
[11] M. Shariat Panahi,et al. GEM: A novel evolutionary optimization method with improved neighborhood search , 2009, Appl. Math. Comput..
[12] Kit Yan Chan,et al. Improved orthogonal array based simulated annealing for design optimization , 2009, Expert Syst. Appl..
[13] Jing J. Liang,et al. Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..
[14] Ray J. Paul,et al. Simulation optimisation using a genetic algorithm , 1998, Simul. Pract. Theory.
[15] Marco Gaviano,et al. Test Functions with Variable Attraction Regions for Global Optimization Problems , 1998, J. Glob. Optim..
[16] Jamal Arkat,et al. Estimating the parameters of Weibull distribution using simulated annealing algorithm , 2006, Appl. Math. Comput..
[17] Dervis Karaboga,et al. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..
[18] Wenyin Gong,et al. Enhancing the performance of differential evolution using orthogonal design method , 2008, Appl. Math. Comput..
[19] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[20] Shinn-Ying Ho,et al. A novel orthogonal simulated annealing algorithm for optimization of electromagnetic problems , 2003, IEEE Transactions on Magnetics.
[21] Jing J. Liang,et al. Dynamic multi-swarm particle swarm optimizer with local search , 2005, 2005 IEEE Congress on Evolutionary Computation.
[22] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[23] M. Mahdavi,et al. ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .
[24] Chinyao Low,et al. An ant direction hybrid differential evolution heuristic for the large-scale passive harmonic filters planning problem , 2008, Expert Syst. Appl..
[25] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[26] Francisco Herrera,et al. Adaptive local search parameters for real-coded memetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.
[27] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.