Grid-Based Projector-Augmented Wave Method

[1]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[2]  Jens S. Hummelshøj,et al.  Formation energies of group I and II metal oxides using random phase approximation , 2013 .

[3]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[4]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[5]  X. Gonze,et al.  Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems , 2008 .

[6]  Hannu Häkkinen,et al.  Time-dependent density-functional theory in the projector augmented-wave method. , 2008, The Journal of chemical physics.

[7]  Sullivan,et al.  Large-scale electronic-structure calculations with multigrid acceleration. , 1995, Physical review. B, Condensed matter.

[8]  S. Lany,et al.  Polymorphic energy ordering of MgO, ZnO, GaN, and MnO within the random phase approximation , 2013 .

[9]  Paulius Micikevicius,et al.  3D finite difference computation on GPUs using CUDA , 2009, GPGPU-2.

[10]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[11]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[12]  Georg Kresse,et al.  Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory , 2008 .

[13]  Matthias Scheffler,et al.  Exploring the random phase approximation: Application to CO adsorbed on Cu(111) , 2009 .

[14]  F Mittendorfer,et al.  Accurate surface and adsorption energies from many-body perturbation theory. , 2010, Nature materials.

[15]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[16]  Georg Kresse,et al.  Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids , 2010 .

[17]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[18]  Lin Li,et al.  Graphics Processing Unit acceleration of the Random Phase Approximation in the projector augmented wave method , 2013, Comput. Phys. Commun..

[19]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[20]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[21]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[22]  S. Levchenko,et al.  AuN clusters (N = 1-6) supported on MgO(100) surfaces: Effect of exact exchange and dispersion interactions on adhesion energies , 2012 .

[23]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[24]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[25]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[26]  K. Jacobsen,et al.  Optical properties of bulk semiconductors and graphene/boron nitride: The Bethe-Salpeter equation with derivative discontinuity-corrected density functional energies , 2012, 1206.3518.

[27]  Bing Xiao,et al.  Structural phase transitions in Si and SiO 2 crystals via the random phase approximation , 2012 .

[28]  Ab initio calculations of electronic excitations: Collapsing spectral sums , 2010 .

[29]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[30]  Y. Ping,et al.  Solution of the Bethe-Salpeter equation without empty electronic states: Application to the absorption spectra of bulk systems , 2012 .

[31]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[32]  S. Louie,et al.  GW method with the self-consistent Sternheimer equation , 2009, 0912.3087.

[33]  K. Jacobsen,et al.  Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces , 2011, 1104.1273.

[34]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  S. Baroni,et al.  GW quasiparticle spectra from occupied states only , 2009, 0910.0791.

[39]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[40]  Ville Havu,et al.  All-electron density functional theory and time-dependent density functional theory with high-order finite elements. , 2009, The Journal of chemical physics.

[41]  Nicolas Pinto,et al.  PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation , 2009, Parallel Comput..

[42]  Jussi Enkovaara,et al.  Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs) , 2012, PARA.

[43]  J. Dobson,et al.  Calculation of dispersion energies , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  K. Thygesen,et al.  Dispersive and covalent interactions between graphene and metal surfaces from the random phase approximation. , 2011, Physical review letters.

[45]  Yan Li,et al.  Ab initio calculation of van der Waals bonded molecular crystals. , 2009, Physical review letters.

[46]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[47]  Fabien Bruneval,et al.  Range-separated approach to the RPA correlation applied to the van der Waals Bond and to diffusion of defects. , 2012, Physical review letters.