On the convergence of an inexact Newton-type method

In this paper we give local convergence results of an inexact Newton-type method for monotone equations under a local error bound condition. This condition may hold even for problems with non-isolated solutions, and it therefore is weaker than the standard non-singularity condition.

[1]  Defeng Sun,et al.  Sub-quadratic convergence of a smoothing Newton algorithm for the P0– and monotone LCP , 2004, Math. Program..

[2]  A. Galántai The theory of Newton's method , 2000 .

[3]  C. Kanzow Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties , 2004 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Masao Fukushima,et al.  Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions , 2002, Optim. Methods Softw..

[6]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[7]  Masao Fukushima,et al.  The Proximal Point Algorithm with Genuine Superlinear Convergence for the Monotone Complementarity Problem , 2000, SIAM J. Optim..

[8]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[9]  K. Toh,et al.  Superlinear Convergence of a Newton-Type Algorithm for Monotone Equations , 2005 .

[10]  M. Fukushima,et al.  Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints , 2004 .

[11]  Andreas Fischer,et al.  Local behavior of an iterative framework for generalized equations with nonisolated solutions , 2002, Math. Program..

[12]  S. M. Robinson Some continuity properties of polyhedral multifunctions , 1981 .

[13]  Masao Fukushima,et al.  Regularized Newton Methods for Convex Minimization Problems with Singular Solutions , 2004, Comput. Optim. Appl..

[14]  Mikhail V. Solodov,et al.  A Globally Convergent Inexact Newton Method for Systems of Monotone Equations , 1998 .

[15]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[16]  Masao Fukushima,et al.  A Superlinearly Convergent Algorithm for the Monotone Nonlinear Complementarity Problem Without Uniqueness and Nondegeneracy Conditions , 2002, Math. Oper. Res..

[17]  Tetsuro Yamamoto,et al.  Historical developments in convergence analysis for Newton's and Newton-like methods , 2000 .