RECENT DEVELOPMENTS IN VIRTUAL AUDITORY SPACE

Virtual Auditory Space technology is being applied to a broad range of applications in a wide variety of fields. The flexibility and fine degree of stimulus control enabled by VAS techniques makes them perfectly suited for studying sound localization and spatial auditory perception. Researchers can easily separate out the relative importance of different spatial cues, manipulate stimulus “sources” with ease and speed, and generate stimuli which are difficult or impossible to generate using free-field techniques. This same level of flexibility and control makes VAS displays useful in providing spatial auditory information to a human operator in many real-world applications. In the past, visual displays have been employed almost exclusively to present spatial information to air traffic controllers, fighter pilots, and other human operators. However, there is a growing need to increase the amount of information received by such operators. VAS techniques provide the opportunity to exploit the auditory channel without directly compromising the information already available via other modalities. VAS displays are also integral parts of multimodal “virtual environment” (VE) systems (proposed for use in training and entertainment) and “teleoperator” systems (designed to display information from remote or dangerous environments).

[1]  D. M. Green,et al.  Sound localization by human listeners. , 1991, Annual review of psychology.

[2]  李幼升,et al.  Ph , 1989 .

[3]  Thomas B. Sheridan,et al.  Telerobotics, Automation, and Human Supervisory Control , 2003 .

[4]  Elizabeth M. Wenzel,et al.  Perceptual consequences of interpolating head-related transfer functions during spatial synthesis , 1993, Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[5]  A. D. Little,et al.  Spectral Content as a Cue to Perceived Auditory Distance , 1992, Perception.

[6]  J. Hebrank,et al.  Pinna reflections as cues for localization. , 1974, The Journal of the Acoustical Society of America.

[7]  Douglas S. Brungart,et al.  Distance information transmission using first‐order reflections , 1994 .

[8]  Heinrich Hertz,et al.  On the differences between localization and lateralization. , 1974, The Journal of the Acoustical Society of America.

[9]  Thomas C. Meyer,et al.  Presence as the Defining Factor in a VR Application , 1994 .

[10]  P M Zurek,et al.  Adjustment and discrimination measurements of the precedence effect. , 1993, The Journal of the Acoustical Society of America.

[11]  D R Begault,et al.  Multichannel spatial auditory display for speech communications. , 1993, Journal of the Audio Engineering Society. Audio Engineering Society.

[12]  Mark Hodges Facing real fears in virtual worlds , 1995 .

[13]  Edgar A. G. Shaw The Elusive Connection , 1980 .

[14]  F L Wightman,et al.  Localization using nonindividualized head-related transfer functions. , 1993, The Journal of the Acoustical Society of America.

[15]  N. I. Durlach,et al.  Intensity Perception. II. Resolution in One‐Interval Paradigms , 1972 .

[16]  S.H. Foster,et al.  Real Time Synthesis of Complex Acoustic Environments , 1991, Final Program and Paper Summaries 1991 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics.

[17]  Elizabeth M. Wenzel,et al.  Localization in Virtual Acoustic Displays , 1992, Presence: Teleoperators & Virtual Environments.

[18]  V. Mellert,et al.  Transformation characteristics of the external human ear. , 1977, The Journal of the Acoustical Society of America.

[19]  D R Begault,et al.  Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation , 1993, Human factors.

[20]  S Carlile,et al.  Masking produced by broadband noise presented in virtual auditory space. , 1996, The Journal of the Acoustical Society of America.

[21]  Mark A. Ericson A comparison of maskers on spatially separated competing messages , 1993 .

[22]  William M. Hartmann,et al.  Localization of sound in rooms. , 1982, The Journal of the Acoustical Society of America.

[23]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[24]  D. Pralong,et al.  The location-dependent nature of perceptually salient features of the human head-related transfer functions. , 1994, The Journal of the Acoustical Society of America.

[25]  Alan V. Oppenheim,et al.  Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  J Chen,et al.  External ear transfer function modeling: a beamforming approach. , 1992, The Journal of the Acoustical Society of America.

[27]  Randy F. Pausch,et al.  A Literature Survey for Virtual Environments: Military Flight Simulator Visual Systems and Simulator Sickness , 1992, Presence: Teleoperators & Virtual Environments.

[28]  R. K. Clifton,et al.  Cross-frequency interactions in the precedence effect. , 1995, The Journal of the Acoustical Society of America.

[29]  W. Hartmann,et al.  Localization of sound in rooms, III: Onset and duration effects. , 1986, The Journal of the Acoustical Society of America.

[30]  Dorte Hammershøi,et al.  Binaural Auralization: Comparison of FIR and IIR Filter Representation of HIRs , 1994 .

[31]  Gregory Kramer,et al.  Auditory Display: Sonification, Audification, And Auditory Interfaces , 1994 .

[32]  Durand R. Begault,et al.  Techniques and applications for binaural sound manipulation in human-machine interfaces , 1992 .

[33]  Alan D. Musicant The relationship between tone frequency and perceived elevation under headphone listening conditions , 1995 .

[34]  R K Clifton,et al.  A developmental look at an auditory illusion: the precedence effect. , 1984, Developmental psychobiology.

[35]  L. Rayleigh,et al.  The theory of sound , 1894 .

[36]  D. W. Batteau,et al.  The role of the pinna in human localization , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  F L Wightman,et al.  Headphone simulation of free-field listening. II: Psychophysical validation. , 1989, The Journal of the Acoustical Society of America.

[38]  L. A. Jeffress Localization of Sound , 1975 .

[39]  R. Held Shifts in binaural localization after prolonged exposures to atypical combinations of stimuli. , 1955, The American journal of psychology.

[40]  Douglas S. Brungart,et al.  Minimum audible angles for synthesized localization cues presented over headphones , 1992 .

[41]  D. Perrott Concurrent minimum audible angle: a re-examination of the concept of auditory spatial acuity. , 1984, The Journal of the Acoustical Society of America.

[42]  Matthew Witten,et al.  Increasing Our Understanding of Biological Models Through Visual and Sonic Representations: a Cortical Case Study , 1992, Int. J. High Perform. Comput. Appl..

[43]  J S Bolton,et al.  The use of a one‐parameter model to characterize the acoustical properties of asphalt , 1991 .

[44]  J. C. Middlebrooks Narrow-band sound localization related to external ear acoustics. , 1992, The Journal of the Acoustical Society of America.

[45]  D Pralong,et al.  The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. , 1996, The Journal of the Acoustical Society of America.

[46]  L. K. Canon Intermodality inconsistency of input and directed attention as determinants of the nature of adaptation. , 1970, Journal of experimental psychology.

[47]  B. V. Van Veen,et al.  A spatial feature extraction and regularization model for the head-related transfer function. , 1995, The Journal of the Acoustical Society of America.

[48]  A. D. Little,et al.  Effects of Room Reflectance and Background Noise on Perceived Auditory Distance , 1989, Perception.

[49]  Thomas A. Furness,et al.  Spatial perception in virtual environments: Evaluating an architectural application , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[50]  A. J. Watkins,et al.  Psychoacoustical aspects of synthesized vertical locale cues. , 1978, The Journal of the Acoustical Society of America.

[51]  N I Durlach,et al.  Supernormal auditory localization. I. General background. , 1993, Presence.

[52]  Robert C. Morrison,et al.  High technology laboratory aids for visually handicapped chemistry students , 1981 .

[53]  K A Zucker,et al.  Establishment of a laparoscopic cholecystectomy training program. , 1991, The American surgeon.

[54]  Birger Kollmeier,et al.  A real‐time model of binaural sound source localization resolving spatial ambiguities , 1994 .

[55]  Ted Kuemmel Electromagnetic compatibility standards for acoustical instruments , 1995 .

[56]  Nathaniel I. Durlach,et al.  On the Externalization of Auditory Images , 1992, Presence: Teleoperators & Virtual Environments.

[57]  F. Asano,et al.  Role of spectral cues in median plane localization. , 1990, The Journal of the Acoustical Society of America.

[58]  P M Zurek,et al.  Measurements of binaural echo suppression. , 1979, The Journal of the Acoustical Society of America.

[59]  A D Musicant,et al.  Influence of monaural spectral cues on binaural localization. , 1985, The Journal of the Acoustical Society of America.

[60]  Keith D. Martin Estimating azimuth and elevation from interaural differences , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[61]  R. Plomp,et al.  Binaural speech intelligibility in noise for hearing-impaired listeners. , 1989, The Journal of the Acoustical Society of America.

[62]  Barbara G. Shinn-Cunningham,et al.  Adaptation to supernormal auditory localization cues in an auditory virtual environment , 1994 .

[63]  R. Humanski,et al.  Localization of sound in the vertical plane with and without high-frequency spectral cues , 1992, Perception & psychophysics.

[64]  Durand R. Begault,et al.  Perceptual similarity of measured and synthetic HRTF filtered speech stimuli , 1992 .

[65]  Søren Bech Perception of Reproduced Sound: Audibility of Individual Reflections in a Complete Sound Field, III , 1994 .

[66]  Frederic L. Wightman,et al.  Monaural localization, revisited , 1991 .

[67]  Durand R. Begault,et al.  3-D AUDIO VERSUS HEAD DOWN TCAS DISPLAYS. , 1994 .

[68]  N I Durlach,et al.  Notes and Comment Resolution in one dimension with random variations in background dimensions , 1989, Perception & psychophysics.

[69]  J. Mezrich,et al.  Dynamic Representation of Multivariate Time Series Data , 1984 .

[70]  Frederic L. Wightman,et al.  Reassessment of the role of head movements in human sound localization , 1994 .

[71]  Barry D. Van Veen,et al.  Auditory space modeling and simulation via orthogonal expansion and generalized spline model , 1992 .

[72]  D H Mershon,et al.  Absolute and Relative Cues for the Auditory Perception of Egocentric Distance , 1979, Perception.

[73]  D. Mershon,et al.  Intensity and reverberation as factors in the auditory perception of egocentric distance , 1975 .

[74]  Meredith Bricken,et al.  Summer Students in Virtual Reality , 1992 .

[75]  Albert S. Bregman,et al.  The Auditory Scene. (Book Reviews: Auditory Scene Analysis. The Perceptual Organization of Sound.) , 1990 .

[76]  Durand R. Begault,et al.  Call sign intelligibility improvement using a spatial auditory display , 1993 .

[77]  Jens Blauert,et al.  Principles of binaural room simulation , 1992 .

[78]  E. Wenzel The relative contribution of interaural time and magnitude cues to dynamic sound localization , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[79]  Richard L. McKinley,et al.  Experiments involving auditory localization over headphones using synthesized cues , 1992 .

[80]  Samuel C. McLaughlin,et al.  Change in straight ahead during adaptation to prism , 1965 .

[81]  N.I. Durlach,et al.  Supernormal Auditory LocalizationI. General Background , 1993, Presence: Teleoperators & Virtual Environments.

[82]  E. Shaw Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. , 1974, The Journal of the Acoustical Society of America.

[83]  Thomas Strothotte,et al.  Hyper-navigation in virtual buildings , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[84]  H. Colburn,et al.  Efficient finite-impulse-response filter models of the head-related transfer function , 1995 .

[85]  R Plomp,et al.  The effect of head-induced interaural time and level differences on speech intelligibility in noise. , 1987, The Journal of the Acoustical Society of America.

[86]  Rick L. Jenison,et al.  Radial basis function neural network for modeling auditory space , 1994 .

[87]  Nathaniel I. Durlach,et al.  Virtual Reality: Scientific and Technological Challenges , 1994 .

[88]  Patrick M. Zurek,et al.  The Precedence Effect , 1987 .

[89]  J M Loomis,et al.  Active localization of virtual sounds. , 1990, The Journal of the Acoustical Society of America.

[90]  Gregory H. Wakefield,et al.  On the design of pole-zero approximations using a logarithmic error measure , 1994, IEEE Trans. Signal Process..

[91]  G. F. Kuhn Model for the interaural time differences in the azimuthal plane , 1977 .

[92]  R L McKinley,et al.  3-dimensional auditory displays: development, applications, and performance. , 1994, Aviation, space, and environmental medicine.

[93]  Scott H. Foster,et al.  A Virtual Display System for Conveying Three-Dimensional Acoustic Information , 1988 .

[94]  Alistair D. N. Edwards,et al.  Soundtrack: An Auditory Interface for Blind Users (Abstract Only) , 1989, SGCH.

[95]  William L. Martens,et al.  Simulating the Cues of Spatial Hearing in Natural Environments , 1984, ICMC.

[96]  W. Hartmann,et al.  Localization of sound in rooms, II: The effects of a single reflecting surface. , 1985, The Journal of the Acoustical Society of America.

[97]  D H Mershon,et al.  Visual capture in auditory distance perception: proximity image effect reconsidered. , 1980, The Journal of auditory research.

[98]  D. Grantham Adaptation to auditory motion in the horizontal plane: Effect of prior exposure to motion on motion detectability , 1992, Perception & psychophysics.

[99]  Peter A. Hancock,et al.  Transfer of training from virtual reality , 1993 .

[100]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[101]  F. Wightman,et al.  A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. , 1992, The Journal of the Acoustical Society of America.

[102]  S. Smith,et al.  An Auditory Display for Exploratory Visualization of Multidimensional Data , 1989, Workstations for Experiments.

[103]  Barbara G. Shinn-Cunningham,et al.  Supernormal Auditory Localization , 1993, Presence Teleoperators Virtual Environ..

[104]  A. Mills On the minimum audible angle , 1958 .

[105]  F. Wightman,et al.  The dominant role of low-frequency interaural time differences in sound localization. , 1992, The Journal of the Acoustical Society of America.

[106]  Abhijit Kulkarni,et al.  Binaural recordings from KEMAR mannequin in several acoustical environments , 1992 .

[107]  Frederick P. Brooks,et al.  Towards image realism with interactive update rates in complex virtual building environments , 1990, I3D '90.

[108]  R. Butler,et al.  Spectral cues utilized in the localization of sound in the median sagittal plane. , 1977, The Journal of the Acoustical Society of America.

[109]  H. Wallach,et al.  The role of head movements and vestibular and visual cues in sound localization. , 1940 .

[110]  N I Durlach,et al.  Intensity perception. I. Preliminary theory of intensity resolution. , 1969, The Journal of the Acoustical Society of America.

[111]  M. Moshell,et al.  Three views of virtual reality: virtual environments in the US military , 1993, Computer.

[112]  Durand R. Begault,et al.  Techniques and Applications for Binaural Sound Manipulation , 1992 .