Bayesian Analysis of a 3-Component Mixture of Rayleigh Distributions under Type-I Right Censoring Scheme

Since the last few decades, constructing flexible parametric classes of probability distributions has been the most popular approach in the Bayesian analysis. As compared to simple probability models, a mixture model of some suitable lifetime distributions may be more capable of capturing the heterogeneity of the nature. In this study, a 3component mixture of Rayleigh distributions is investigated by considering type-I right censoring scheme to obtain data from a heterogeneous population. The closed form expressions for the Bayes estimators and posterior risks assuming the non-informative (uniform and Jeffreys’) priors under squared error loss function, precautionary loss function and DeGroot loss function are derived. The performance of the Bayes estimators for different sample sizes, test termination times and parametric values under different loss functions is investigated. The posterior predictive distribution for a future observation and the Bayesian predictive interval are constructed. In addition, the limiting expressions for the Bayes estimators and posterior risks are derived. Simulated data sets are used for the different comparisons and the model is finally illustrated using the real data.

[1]  Stephen G. Walker,et al.  Bayesian parametric inference in a nonparametric framework , 2007 .

[2]  D. J. Davis,et al.  AN ANALYSIS OF SOME FAILURE DATA , 1952 .

[3]  ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE TEST DATA , 1958 .

[4]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  P. Laplace Théorie analytique des probabilités , 1995 .

[6]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  M. Z. Raqab Predictors of future order statistics from type II censored samples , 1992 .

[9]  W. M. Bolstad Introduction to Bayesian Statistics , 2004 .

[10]  L. M. M.-T. Theory of Probability , 1929, Nature.

[11]  B. Arnold,et al.  Bayesian inference for pareto populations , 1983 .

[12]  Arturo J. Fernández Bayesian inference from type II doubly censored Rayleigh data , 2000 .

[13]  On the Bayesian Estimation for two Component Mixture of Maxwell Distribution, Assuming Type I Censored Data , 2012 .

[14]  Seymour Geisser,et al.  On Prior Distributions for Binary Trials , 1984 .

[15]  N. Sedransk,et al.  Mixtures of Distributions: A Topological Approach , 1988 .

[16]  Robert Jacobs,et al.  Bayesian Estimation , 2008, Encyclopedia of GIS.

[17]  Abdul Samad Hirai ESTIMATION OF SCALE AND LOCATION PARAMETERS, USING QUADRATIC COEFFICIENTS , 1972 .

[18]  Jan Gerhard Norstrøm,et al.  The use of precautionary loss functions in risk analysis , 1996, IEEE Trans. Reliab..

[19]  Bayesian prediction based on finite mixtures of lomax components model and type i censoring , 2001 .

[20]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[21]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[22]  M. Degroot Optimal Statistical Decisions , 1970 .

[23]  M. Aslam,et al.  On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample , 2010 .

[24]  Abd El-Baset A. Ahmad,et al.  On Bayesian interval prediction of future records , 2003 .

[25]  M. Akritas,et al.  with censored data , 2003 .

[26]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.