Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

BackgroundBacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature.ResultsWe determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs.ConclusionsDespite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.

[1]  J. Ogawa,et al.  Cyclic-Imide-Hydrolyzing Activity ofd-Hydantoinase from Blastobacter sp. Strain A17p-4 , 1999, Applied and Environmental Microbiology.

[2]  Todd M. Smith,et al.  Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[4]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[5]  H. Takami,et al.  Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. , 2002, Nucleic acids research.

[6]  Nikos Kyrpides,et al.  Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis , 2003, Nature.

[7]  E. Katz,et al.  The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. , 1977, Bacteriological reviews.

[8]  M. Salkinoja-Salonen,et al.  REFERENCES CONTENT ALERTS , 1997 .

[9]  Thomas Schiex,et al.  FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences , 2003, Nucleic Acids Res..

[10]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. L. Manachini,et al.  Contribution to phenotypic and genotypic characterization of Bacillus licheniformis and description of new genomovars. , 1998, Systematic and applied microbiology.

[12]  C. B. Thorne,et al.  Factors affecting transformation of Bacillus licheniformis. , 1966, Journal of bacteriology.

[13]  A. O'donnell,et al.  Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, and Bacillus amyloliquefaciens by Pyrolysis Gas-Liquid Chromatography, Deoxyribonucleic Acid-Deoxyribonucleic Acid Hybridization, Biochemical Tests, and API Systems , 1980 .

[14]  S. Ehrlich,et al.  Co-linear scaffold of the Bacillus licheniformis and Bacillus subtilis genomes and its use to compare their competence genes. , 2002, FEMS microbiology letters.

[15]  H. Sahl,et al.  Combination of antibiotic mechanisms in lantibiotics. , 2002, Farmaco.

[16]  M. Lisowski,et al.  Interactions of the Streptomyces lividans initiator protein DnaA with its target. , 1999, European journal of biochemistry.

[17]  R. Gherna American Type Culture Collection catalogue of bacteria and phages , 1989 .

[18]  Elaine R. Mardis,et al.  In Genome analysis: A laboratory manual , 1997 .

[19]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[20]  B. Birren,et al.  Stable propagation of cosmid sized human DNA inserts in an F factor based vector. , 1992, Nucleic acids research.

[21]  J. N. Petersen,et al.  Cytotoxic potential of industrial strains of Bacillus sp. , 2002, Regulatory toxicology and pharmacology : RTP.

[22]  D. Eveleigh The Microbiological Production of Industrial Chemicals. , 1981 .

[23]  Jian Wang,et al.  A complete sequence of the T. tengcongensis genome. , 2002, Genome research.

[24]  P. de Vos,et al.  Genotypic diversity among Bacillus licheniformis strains from various sources. , 2004, FEMS microbiology letters.

[25]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[26]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[27]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[28]  N. Shimizu,et al.  [Shotgun sequencing]. , 2019, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[29]  J. Wallach,et al.  Lichenysin: a more efficient cation chelator than surfactin. , 2001, Applied biochemistry and biotechnology.

[30]  M. Goodfellow,et al.  The Aerobic Endospore-Forming Bacteria: Classification and Identification , 1981 .

[31]  E. Adderson,et al.  Correlation of phylogenetic lineages of group B Streptococci, identified by analysis of restriction-digestion patterns of genomic DNA, with infB alleles and mobile genetic elements. , 2002, The Journal of infectious diseases.

[32]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[33]  Atsushi Sato,et al.  Distribution and Variation of Bacitracin Synthetase Gene Sequences in Laboratory Stock Strains of Bacillus licheniformis , 2002, Current Microbiology.

[34]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[35]  J. Côté,et al.  Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. , 2003, International journal of systematic and evolutionary microbiology.

[36]  S. Salzberg,et al.  The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria , 2003, Nature.

[37]  C. B. Thorne,et al.  TRANSFORMATION OF BACILLUS LICHENIFORMIS , 1964, Journal of bacteriology.

[38]  A Danchin,et al.  Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. , 1999, Nucleic acids research.

[39]  S. Casjens,et al.  Prophages and bacterial genomics: what have we learned so far? , 2003, Molecular microbiology.

[40]  Steven Salzberg,et al.  A probabilistic method for identifying start codons in bacterial genomes , 2001, Bioinform..

[41]  B. Christensen,et al.  DnaA Boxes Are Important Elements in Setting the Initiation Mass of Escherichia coli , 1999, Journal of bacteriology.

[42]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[43]  Jian Zhang,et al.  The Protein Information Resource: an integrated public resource of functional annotation of proteins , 2002, Nucleic Acids Res..

[44]  H. Sahl,et al.  Multiple activities in lantibiotics--models for the design of novel antibiotics? , 2002, Current pharmaceutical design.

[45]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[46]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[47]  L. Hederstedt Krebs´ citric acid cycle , 1993 .

[48]  Anders Krogh,et al.  EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance , 2003, BMC Bioinformatics.

[49]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[50]  G. Bierbaum,et al.  Biosynthesis of the Lantibiotic Mersacidin: Organization of a Type B Lantibiotic Gene Cluster , 2000, Applied and Environmental Microbiology.

[51]  L. Frederick Introduction to Soil Microbiology , 1962 .

[52]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[53]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .