MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY

We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg^2 of the NOAO Deep Wide Field Survey Bootes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r > 0.8) and that their joint variance (σ_(12)) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBootes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S _0 ≃ 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

[1]  C. Kochanek,et al.  The Mid-Infrared Properties of X-Ray Sources , 2006, 0803.0357.

[2]  Willem Wamsteker,et al.  Hot dust on the outskirts of the broad-line region in Fairall 9 , 1989 .

[3]  A. J. Drake,et al.  Variability-selected Quasars in MACHO Project Magellanic Cloud Fields , 2002, astro-ph/0209513.

[4]  Variability in active galactic nuclei: confrontation of models with observations , 2001, astro-ph/0110707.

[5]  Hiroyuki Mito,et al.  The IRSA 2MASS all-sky point source catalog , 2008 .

[6]  E. L. Wright,et al.  Mid-Infrared Selection of Brown Dwarfs and High-Redshift Quasars , 2006, astro-ph/0608603.

[7]  Michael J. Kurtz,et al.  Hectospec, the MMT’s 300 Optical Fiber‐Fed Spectrograph , 2005, astro-ph/0508554.

[8]  R. Barvainis,et al.  Hot Dust and the Near-Infrared Bump in the Continuum Spectra of Quasars and Active Galactic Nuclei , 1987 .

[9]  E. L. Wright,et al.  The Infrared Array Camera (IRAC) Shallow Survey , 2004 .

[10]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[11]  O. University,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. I. Overview and Initial Results , 2005, astro-ph/0504084.

[12]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[13]  Richard G. McMahon,et al.  The variability of optically selected quasars , 1994 .

[14]  R. J. Assef,et al.  Low Resolution Spectral Templates for AGNs and Galaxies , 2009, 0909.3849.

[15]  G. Matthews Variability of Quasars at 10 Microns , 1999, astro-ph/9903363.

[16]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[17]  E. L. Wright,et al.  THE SPITZER DEEP, WIDE-FIELD SURVEY , 2009, 0906.0024.

[18]  J. Bochanski,et al.  M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS , 2009, 0906.2030.

[19]  M. Rieke,et al.  Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope , 2005, astro-ph/0502216.

[20]  G. Rieke,et al.  Variability and the nature of QSO optical-infrared continua , 1985 .

[21]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[22]  Davis,et al.  Structure Function Analysis of Long-Term Quasar Variability , 2004, astro-ph/0411348.

[23]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[24]  Arjun Dey,et al.  The 1 < z < 5 Infrared Luminosity Function of Type I Quasars , 2005, astro-ph/0510504.

[25]  G. Ghisellini,et al.  A MODEL FOR THE X-RAY AND ULTRAVIOLET EMISSION FROM SEYFERT GALAXIES AND GALACTIC BLACK HOLES , 1994, astro-ph/9405059.

[26]  Arjun Dey,et al.  The Chandra XBoötes Survey. III. Optical and Near-Infrared Counterparts , 2005, astro-ph/0512343.

[27]  G. Neugebauer,et al.  Continuum energy distribution of quasars: Shapes and origins , 1989 .

[28]  D. Borgne,et al.  Radio-loud AGN in the XMM-LSS field II. A dichotomy in environment and accretion mode? , 2008 .

[29]  R. J. Assef,et al.  THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION , 2010, 1001.4529.

[30]  Long-term infrared photometry of Seyferts , 2004, astro-ph/0402289.

[31]  Anthony H. Gonzalez,et al.  LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm , 2010 .

[32]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[33]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[34]  NEW QUASARS DETECTED VIA VARIABILITY IN THE QUEST1 SURVEY , 2003, astro-ph/0310916.

[35]  I. McGreer,et al.  A COMPARISON OF X-RAY AND MID-INFRARED SELECTION OF OBSCURED ACTIVE GALACTIC NUCLEI , 2009, 0911.2448.

[36]  C. Kochanek,et al.  DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS , 2009, 0904.1740.

[37]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[38]  I. Soszyński Long Secondary Periods and Binarity in Red Giant Stars , 2007, astro-ph/0701463.

[39]  Daniel J. Eisenstein,et al.  Luminosity Function Constraints on the Evolution of Massive Red Galaxies since z ~ 0.9 , 2008, 0804.4516.

[40]  Deep Westerbork 1.4 GHz imaging of the Bootes field , 2001, astro-ph/0111543.

[41]  Brandon C. Kelly,et al.  Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations , 2009 .

[42]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[43]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[44]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .