Spatial patterns of a predator-prey model with cross diffusion

[1]  Li Li,et al.  Pattern dynamics of a spatial predator–prey model with noise , 2012 .

[2]  Zhen Jin,et al.  Effect of noise on the pattern formation in an epidemic model , 2010 .

[3]  Zhen Jin,et al.  Self-organized wave pattern in a predator-prey model , 2010 .

[4]  Zhen Jin,et al.  Rich dynamics in a predator-prey model with both noise and periodic force , 2010, Biosyst..

[5]  Hong Xiang,et al.  Bifurcation and stability analysis in predator–prey model with a stage-structure for predator , 2009 .

[6]  Zhen Jin,et al.  The role of noise in a predator–prey model with Allee effect , 2009, Journal of biological physics.

[7]  Zhen Jin,et al.  SPATIAL PATTERN IN AN EPIDEMIC SYSTEM WITH CROSS-DIFFUSION OF THE SUSCEPTIBLE , 2009 .

[8]  Zhen Jin,et al.  Predator cannibalism can give rise to regular spatial pattern in a predator–prey system , 2009 .

[9]  Zhen Jin,et al.  Dynamical complexity of a spatial predator-prey model with migration , 2008 .

[10]  Li Li,et al.  Pattern formation induced by cross-diffusion in a predator–prey system , 2008 .

[11]  Enrique Peacock-López,et al.  Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion. , 2007, The Journal of chemical physics.

[12]  B. Peña,et al.  Stability of Turing patterns in the Brusselator model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Balram Dubey,et al.  A predator–prey interaction model with self and cross-diffusion , 2001 .

[14]  Eduardo Sáez,et al.  Dynamics of a Predator-Prey Model , 1999, SIAM J. Appl. Math..

[15]  Yuan Lou,et al.  DIFFUSION VS CROSS-DIFFUSION : AN ELLIPTIC APPROACH , 1999 .

[16]  F. Hynne,et al.  Amplitude equations for reaction-diffusion systems with a Hopf bifurcation and slow real modes , 1998, chao-dyn/9812028.

[17]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[18]  James T. Tanner,et al.  THE STABILITY AND THE INTRINSIC GROWTH RATES OF PREY AND PREDATOR POPULATIONS , 1975 .

[19]  Zhen Jin,et al.  SPATIAL PATTERN IN A PREDATOR-PREY SYSTEM WITH BOTH SELF- AND CROSS-DIFFUSION , 2009 .

[20]  李莉,et al.  Spatial Pattern of an Epidemic Model with Cross-diffusion , 2008 .

[21]  Jesse A. Logan,et al.  Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees , 1988 .

[22]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[23]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.