High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology

We present a numerical discretisation of an embedded two-dimensional manifold using high-order continuous Galerkin spectral/hp elements, which provide exponential convergence of the solution with increasing polynomial order, while retaining geometric flexibility in the representation of the domain. Our work is motivated by applications in cardiac electrophysiology where sharp gradients in the solution benefit from the high-order discretisation, while the computational cost of anatomically-realistic models can be significantly reduced through the surface representation and use of high-order methods. We describe and validate our discretisation and provide a demonstration of its application to modelling electrochemical propagation across a human left atrium.

[1]  L. M. Albright Vectors , 2003, Current protocols in molecular biology.

[2]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[3]  Martin Rumpf,et al.  Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces , 2000, IEEE Trans. Vis. Comput. Graph..

[4]  George Em Karniadakis,et al.  TetrahedralhpFinite Elements , 1996 .

[5]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[6]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[7]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[8]  David Kay,et al.  Efficient simulation of cardiac electrical propagation using high-order finite elements II: Adaptive p-version , 2013, J. Comput. Phys..

[9]  Nadia Magnenat-Thalmann,et al.  The SPHERIGON: a simple polygon patch for smoothing quickly your polygonal meshes , 1998, Proceedings Computer Animation '98 (Cat. No.98EX169).

[10]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[11]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[12]  David Kay,et al.  Efficient simulation of cardiac electrical propagation using high order finite elements , 2012, J. Comput. Phys..

[13]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[14]  Spencer J. Sherwin,et al.  A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems , 2011 .

[15]  Sherwin,et al.  Tetrahedral hp Finite Elements : Algorithms and Flow Simulations , 1996 .

[16]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[17]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[18]  M. Courtemanche,et al.  Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. , 1998, The American journal of physiology.

[19]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[20]  Petros Koumoutsakos,et al.  Simulations of (an)isotropic diffusion on curved biological surfaces. , 2006, Biophysical journal.

[21]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[22]  Donna A. Calhoun,et al.  A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..

[23]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[24]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[25]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[26]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[27]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[28]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[29]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[30]  P. Fischer,et al.  Petascale algorithms for reactor hydrodynamics , 2008 .

[31]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[32]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[33]  Francis X. Giraldo,et al.  A spectral element shallow water model on spherical geodesic grids , 2001 .