Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis

[1]  P. Betsch,et al.  An enhanced tire model for dynamic simulation based on geometrically exact shells , 2016 .

[2]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[3]  Ignacio Romero,et al.  A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations , 2008 .

[4]  Parviz E. Nikravesh,et al.  A two-dimensional tire model on uneven roads for vehicle dynamic simulation1 , 2008 .

[5]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[6]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[7]  Yoshihiro Suda,et al.  Non-linear elastic ring tyre model using the absolute nodal coordinate formulation , 2009 .

[8]  Aki Mikkola,et al.  The Simplest 3- and 4-Noded Fully-Parameterized ANCF Plate Elements , 2012 .

[9]  Davor Hrovat,et al.  A 3D Brush-type Dynamic Tire Friction Model , 2004 .

[10]  Hiroyuki Sugiyama,et al.  Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates , 2003 .

[11]  Johannes Gerstmayr,et al.  Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples , 2013 .

[12]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[13]  Patrick Gruber,et al.  Normal and shear forces in the contact patch of a braked racing tyre. Part 1: results from a finite-element model , 2012 .

[14]  Aki Mikkola,et al.  Experimental validation of flexible multibody dynamics beam formulations , 2013 .

[15]  Johannes Gerstmayr,et al.  A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation , 2011 .

[16]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[17]  Hiroyuki Sugiyama,et al.  Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model , 2015 .

[18]  Aki Mikkola,et al.  A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation , 2005 .

[19]  H. Sugiyama,et al.  On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation , 2015 .

[20]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[21]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[22]  Michael Gipser,et al.  FTire: a physically based application-oriented tyre model for use with detailed MBS and finite-element suspension models , 2005 .

[23]  Hiroyuki Sugiyama,et al.  Spatial joint constraints for the absolute nodal coordinate formulation using the non-generalized intermediate coordinates , 2011 .

[24]  Carlos Canudas-de-Wit,et al.  Dynamic Friction Models for Road/Tire Longitudinal Interaction , 2003 .

[25]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[26]  Masaki Shiratori,et al.  Tire Cornering Simulation Using an Explicit Finite Element Analysis Code , 1998 .

[27]  S. K. Clark,et al.  MECHANICS OF PNEUMATIC TIRES , 1971 .

[28]  K. Bathe Finite Element Procedures , 1995 .

[29]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[30]  Peter Betsch,et al.  A nonlinear extensible 4-node shell element based on continuum theory and assumed strain interpolations , 1996 .

[31]  R. Hauptmann,et al.  `Solid-shell' elements with linear and quadratic shape functions at large deformations with nearly incompressible materials , 2001 .

[32]  A. Gallrein,et al.  CDTire: a tire model for comfort and durability applications , 2007 .

[33]  Hiroyuki Sugiyama,et al.  Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation , 2015 .

[34]  A. Mikkola,et al.  Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems , 2013 .

[35]  A. Noor,et al.  Assessment of Computational Models for Multilayered Composite Shells , 1990 .

[36]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[37]  Chang-Wan Kim,et al.  The simplest 3-, 6- and 8-noded fully-parameterized ANCF plate elements using only transverse slopes , 2015 .

[38]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[39]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[40]  A. Mikkola,et al.  A new locking-free shear deformable finite element based on absolute nodal coordinates , 2007 .

[41]  R. Y. Yakoub,et al.  Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .