At early age, the mechanical characteristics of concrete, such as Young's modulus, follow a rapid rate of change. If strains are restricted or in the event of strain gradients, tensile stresses are generated and there is a risk of cracks occurring. Besides relaxation, change in Young's modulus as a function of the degree of hydration is a major parameter for the modeling of this phenomenon. In this evolution, a threshold of the degree of hydration has to be taken into account, below which concrete displays negligible stiffness. For cement pastes, a simplified hydration model shows that percolation of the solid phases depends on the w/c ratio, which is in accordance with experimental results. On the other hand, for mortar or concrete, the presence of aggregates means that the solid volumetric fraction is such that percolation is observed before hydration occurs. Therefore another parameter is introduced: cohesion due to hydration products. By coupling our model with a finite-element code (CAST3M), it is shown that the threshold for Young's modulus in mortar is almost independent of the w/c ratio, which is in accordance with experimental results.RésuméAu jeune âge, les caractéristiques mécaniques du béton, telles que le module d'Young, suivent une évolution rapide. Si les déformations sont gênées, ou s'il existe des gradients de déformation, des contraintes de traction sont générées et il y a un risque de fissuration. La variation du module d'Young en fonction du degré d'hydratation est un paramètre majeur pour la modélisation de ce phénomène. Dans cette évolution, un seuil d'hydratation en deçà duquel la rigidité du béton est négligeable doit être pris en compte. Pour des pâtes de ciment, un modèle simplifié d'hydratation montre que la percolation des phases solides dépend du rapport eau sur ciment, ce qui est en accord avec les résultats expérimentaux. Pour les mortiers et les bétons, la présence des granulats a pour conséquence que la percolation de la fraction solide est observée même pour un degré d'hydratation nul. C'est pourquoi nous introduisons un autre paramètre: la cohésion due aux hydrates formés. En introduisant notre modèle dans un code de calcul aux éléments finis (CAST3M), nous montrons que le seuil d'hydratation du module d'Young du mortier est pratiquement indépendant du rapport eau sur ciment, ce qui est en accord avec les résultats expérimentaux.
[1]
I. Odler,et al.
On the origin of Portland cement setting
,
1992
.
[2]
A. Y. Dovzhenko,et al.
The effect of particle size distribution on the formation of percolation clusters
,
1995
.
[3]
F. Cohen Tenoudji,et al.
Mechanical properties of cement pastes and mortars at early ages: Evolution with time and degree of hydration
,
1996
.
[4]
Luc Taerwe,et al.
Degree of hydration-based description of mechanical properties of early age concrete
,
1996
.
[5]
Dale P. Bentz,et al.
CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modelling Package. Version 2.0.
,
2000
.
[6]
K. Van Breugel,et al.
Simulation of hydration and formation of structure in hardening cement-based materials
,
1991
.
[7]
Franz-Josef Ulm,et al.
A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials
,
2003
.
[8]
Jan Byfors,et al.
Plain concrete at early ages
,
1980
.
[9]
Denis Damidot,et al.
Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker
,
2001
.