Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers

[1]  David G Lidzey,et al.  Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope. , 2005, Nano letters.

[2]  Jaebeom Lee,et al.  Bioconjugated superstructures of CdTe nanowires and nanoparticles: multistep cascade Förster resonance energy transfer and energy channeling. , 2005, Nano letters.

[3]  Daniel Moses,et al.  Multilayer Polymer Light‐Emitting Diodes: White‐Light Emission with High Efficiency , 2005 .

[4]  R. Cingolani,et al.  Amplified spontaneous emission from a conjugated polymer undergone a high-temperature lithography cycle , 2005 .

[5]  Roberto Cingolani,et al.  Förster energy transfer from blue-emitting polymers to colloidal CdSe∕ZnS core shell quantum dots , 2004 .

[6]  D. Bradley,et al.  Model for Energy Transfer in Polymer/Dye Blends Based on Point−Surface Dipole Interaction , 2004 .

[7]  A. Zanelli,et al.  New Branched Thiophene‐Based Oligomers for Bright Organic Light‐Emitting Devices , 2003 .

[8]  G. Gigli,et al.  Controlling non-radiative energy transfer in organic binary blends: a route towards colour tunability and white emission from single-active-layer light-emitting devices , 2003 .

[9]  D. Bradley,et al.  Dynamics of Förster transfer in polyfluorene-based polymer blends and Langmuir–Blodgett nanostructures , 2003 .

[10]  Giuseppe Gigli,et al.  Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules , 2003 .

[11]  Donal D. C. Bradley,et al.  Efficient energy transfer in organic thin films—implications for organic lasers , 2002 .

[12]  Alan J. Heeger,et al.  Low threshold distributed feedback lasers fabricated from blends of conjugated polymers: Reduced losses through Förster transfer , 2002 .

[13]  R. Friend,et al.  Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Wei Chen,et al.  Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates , 2002 .

[15]  Donal D. C. Bradley,et al.  Light amplification and gain in polyfluorene waveguides , 2002 .

[16]  R. T. Phillips,et al.  Effects of aggregation on the excitation transfer in perylene-end-capped polyindenofluorene studied by time-resolved photoluminescence spectroscopy , 2001 .

[17]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[18]  Richard D. Schaller,et al.  Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated Polymer Films , 2001 .

[19]  G. Lanzani,et al.  Amplified spontaneous emission from a soluble thiophene-based oligomer , 2001 .

[20]  D. Ginger,et al.  Enhanced Förster energy transfer in organic/inorganic bilayer optical microcavities , 2001 .

[21]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[22]  Ullrich Scherf,et al.  Excitation energy migration in highly emissive semiconducting polymers , 2000, SPIE Optics + Photonics.

[23]  James J. O'Brien,et al.  Progress with Light‐Emitting Polymers , 2000 .

[24]  A. K. Sheridan,et al.  Tuneability of amplified spontaneous emission through control of the waveguide-mode structure in conjugated polymer films , 2000 .

[25]  W. Barnes,et al.  Förster energy transfer in an optical microcavity. , 2000, Science.

[26]  Vojislav I. Srdanov,et al.  Narrow Bandwidth Luminescence from Blends with Energy Transfer from Semiconducting Conjugated Polymers to Europium Complexes , 1999 .

[27]  Stephen R. Forrest,et al.  White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer , 1999 .

[28]  N. Tessler,et al.  All-polymer optoelectronic devices , 1999, Science.

[29]  W. Spirkl,et al.  Nonlinear Emission and Recombination in Conjugated Polymer Waveguides , 1999 .

[30]  Alan J. Heeger,et al.  Low-threshold amplified spontaneous emission in blends of conjugated polymers , 1998 .

[31]  Alan J. Heeger,et al.  Amplified spontaneous emission from photopumped films of a conjugated polymer , 1998 .

[32]  Stephen R. Forrest,et al.  Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts , 1998 .

[33]  C. Svelto,et al.  Analysis of amplified spontaneous emission: some corrections to the Linford formula , 1998 .

[34]  Richard H. Friend,et al.  High Peak Brightness Polymer Light‐Emitting Diodes , 1998 .

[35]  Ullrich Scherf,et al.  Efficient white light-emitting diodes realized with new processable blends of conjugated polymers , 1997 .

[36]  A. Dodabalapur,et al.  Light amplification in organic thin films using cascade energy transfer , 1997, Nature.

[37]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[38]  Richard H. Friend,et al.  Spectral narrowing in optically pumped poly (p‐phenylenevinylene) Films , 1997 .

[39]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[40]  T. Roenneberg,et al.  Two circadian oscillators in one cell , 1993, Nature.

[41]  Richard C. Powell,et al.  Singlet exciton energy transfer in organic solids , 1975 .

[42]  R. F. Leheny,et al.  Direct Determination of Optical Gain in Semiconductor Crystals , 1971 .

[43]  Hans Kuhn,et al.  Classical Aspects of Energy Transfer in Molecular Systems , 1970 .

[44]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[45]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[46]  Alfred Ehmert,et al.  Ein einfaches Verfahren zur Messung kleinster Jodkonzentrationen, Jod- und Natriumthiosulfatmengen in Lösungen , 1949 .