Semantic-Geographic Trajectory Pattern Mining Based on a New Similarity Measurement

Trajectory pattern mining is becoming increasingly popular because of the development of ubiquitous computing technology. Trajectory data contain abundant semantic and geographic information that reflects people’s movement patterns, i.e., who is performing a certain type of activity when and where. However, the variety and complexity of people’s movement activity and the large size of trajectory datasets make it difficult to mine valuable trajectory patterns. Moreover, most existing trajectory similarity measurements only consider a portion of the information contained in trajectory data. The patterns obtained cannot be interpreted well in terms of both semantic meaning and geographic distributions. As a result, these patterns cannot be used accurately for recommendation systems or other applications. This paper introduces a novel concept of the semantic-geographic pattern that considers both semantic and geographic meaning simultaneously. A flexible density-based clustering algorithm with a new trajectory similarity measurement called semantic intensity is used to mine these semantic-geographic patterns. Comparative experiments on check-in data from the Sina Weibo service demonstrate that semantic intensity can effectively measure both semantic and geographic similarities among trajectories. The resulting patterns are more accurate and easy to interpret.

[1]  M. Goodchild,et al.  An optimisation model for linear feature matching in geographical data conflation , 2011 .

[2]  Robert Weibel,et al.  Analysis of movement data , 2016, Int. J. Geogr. Inf. Sci..

[3]  Reinaldo Bezerra Braga,et al.  LIDU : une approche basée sur la localisation pour l'identification de similarités d'intérêts entre utilisateurs dans les réseaux sociaux. (LIDU : Location-based approach to IDentify similar interests between Users in social networks) , 2012 .

[4]  Leonidas J. Guibas,et al.  Discrete Geometric Shapes: Matching, Interpolation, and Approximation , 2000, Handbook of Computational Geometry.

[5]  Laurent Étienne,et al.  Trajectory Box Plot; a New Pattern to Summarize Movements , 2015 .

[6]  Ling Chen,et al.  Mining user similarity based on routine activities , 2013, Inf. Sci..

[7]  Charu C. Aggarwal,et al.  Mining Text Data , 2012, Springer US.

[8]  Trisalyn A. Nelson,et al.  A review of quantitative methods for movement data , 2013, Int. J. Geogr. Inf. Sci..

[9]  Michael F. Goodchild,et al.  Semantic similarity measurement based on knowledge mining: an artificial neural net approach , 2012, Int. J. Geogr. Inf. Sci..

[10]  Wang-Chien Lee,et al.  Mining geographic-temporal-semantic patterns in trajectories for location prediction , 2013, ACM Trans. Intell. Syst. Technol..

[11]  Wei Huang,et al.  Understanding human activity patterns based on space-time-semantics , 2016 .

[12]  Bettina Speckmann,et al.  Similarity of trajectories taking into account geographic context , 2014, J. Spatial Inf. Sci..

[13]  Martin Raubal,et al.  Measuring similarity of mobile phone user trajectories– a Spatio-temporal Edit Distance method , 2014, Int. J. Geogr. Inf. Sci..

[14]  Vania Bogorny,et al.  ST‐DMQL: A Semantic Trajectory Data Mining Query Language , 2009, Int. J. Geogr. Inf. Sci..

[15]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[16]  Xing Xie,et al.  Inferring social ties between users with human location history , 2014, J. Ambient Intell. Humaniz. Comput..

[17]  Michael W. Berry,et al.  Survey of Text Mining II , 2008 .

[18]  Bart Kuijpers,et al.  Towards Semantic Trajectory Knowledge Discovery , 2007 .

[19]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[20]  Yifan Li,et al.  Clustering moving objects , 2004, KDD.

[21]  Wesley W. Chu,et al.  Efficient processing of similarity search under time warping in sequence databases: an index-based approach , 2004, Inf. Syst..

[22]  Ron Shonkwiler Computing the Hausdorff Set Distance in Linear Time for Any L_p Point Distance , 1991, Inf. Process. Lett..

[23]  Maike Buchin,et al.  Computing similarity of coarse and irregular trajectories using space-time prisms , 2013, SIGSPATIAL/GIS.

[24]  Robert B McMaster,et al.  A Statistical Analysis of Mathematical Measures for Linear Simplification , 1986 .

[25]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[26]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[27]  Ajay Chakravarthy,et al.  Mining the Semantic Web , 2005 .

[28]  William Rucklidge,et al.  Efficiently Locating Objects Using the Hausdorff Distance , 1997, International Journal of Computer Vision.

[29]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[30]  Thomas Devogele,et al.  Spatio-temporal trajectory analysis of mobile objects following the same itinerary , 2010 .

[31]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[32]  Philip S. Yu,et al.  Mining Cluster-Based Temporal Mobile Sequential Patterns in Location-Based Service Environments , 2011, IEEE Transactions on Knowledge and Data Engineering.

[33]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[34]  Eric Hsueh-Chan Lu,et al.  Semantic trajectory-based high utility item recommendation system , 2014, Expert Syst. Appl..

[35]  TrespVolker,et al.  Mining the Semantic Web , 2012 .

[36]  Philip Chan,et al.  Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[37]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[38]  Angela Schwering,et al.  Approaches to Semantic Similarity Measurement for Geo‐Spatial Data: A Survey , 2008, Trans. GIS.