Minimal-Perimeter Polyominoes: Chains, Roots, and Algorithms

A polyomino is a set of edge-connected squares on the square lattice. We investigate the combinatorial and geometric properties of minimal-perimeter polyominoes. We explore the behavior of minimal-perimeter polyominoes when they are “inflated,” i.e., expanded by all empty cells neighboring them, and show that inflating all minimal-perimeter polyominoes of a given area create the set of all minimal-perimeter polyominoes of some larger area. We characterize the roots of the infinite chains of sets of minimal-perimeter polyominoes which are created by inflating polyominoes of another set of minimal-perimeter polyominoes, and show that inflating any polyomino for a sufficient amount of times results in a minimal-perimeter polyomino. In addition, we devise two efficient algorithms for counting the number of minimal-perimeter polyominoes of a given area, compare the algorithms and analyze their running times, and provide the counts of polyominoes which they produce.

[1]  D. Klarner Cell Growth Problems , 1967, Canadian Journal of Mathematics.

[2]  D. Hugh Redelmeier,et al.  Counting polyominoes: Yet another attack , 1981, Discret. Math..

[3]  Gill Barequet,et al.  Properties of Minimal-Perimeter Polyominoes , 2018, COCOON.

[4]  Nándor Sieben Polyominoes with minimum site-perimeter and full set achievement games , 2008, Eur. J. Comb..

[5]  Robert A. Sulanke Bijective Recurrences for Motzkin Paths , 2001, Adv. Appl. Math..

[6]  Israel A. Wagner,et al.  On Minimal Perimeter Polyminoes , 2006, DGCI.

[7]  Gabor Fulep,et al.  Polyiamonds and Polyhexes with Minimum Site-Perimeter and Achievement Games , 2010, Electron. J. Comb..

[8]  Robert A. Sulanke,et al.  Moments of Generalized Motzkin Paths , 2000 .

[9]  D. Klarner,et al.  A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[10]  Neal Madras,et al.  A pattern theorem for lattice clusters , 1999 .

[11]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[12]  Iwan Jensen,et al.  Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.

[13]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Andrei Asinowski,et al.  Enumerating Polyominoes with Fixed Perimeter Defect , 2017, Electron. Notes Discret. Math..

[15]  Günter Rote,et al.  Λ > 4: an Improved Lower Bound on the Growth Constant of Polyominoes , 2016, Commun. ACM.

[16]  Da-Lun Wang,et al.  Discrete Isoperimetric Problems , 1977 .

[17]  Renzo Pinzani,et al.  A Bijective Approach to the Area of Generalized Motzkin Paths , 2002, Adv. Appl. Math..