Minimal-Perimeter Polyominoes: Chains, Roots, and Algorithms
暂无分享,去创建一个
[1] D. Klarner. Cell Growth Problems , 1967, Canadian Journal of Mathematics.
[2] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[3] Gill Barequet,et al. Properties of Minimal-Perimeter Polyominoes , 2018, COCOON.
[4] Nándor Sieben. Polyominoes with minimum site-perimeter and full set achievement games , 2008, Eur. J. Comb..
[5] Robert A. Sulanke. Bijective Recurrences for Motzkin Paths , 2001, Adv. Appl. Math..
[6] Israel A. Wagner,et al. On Minimal Perimeter Polyminoes , 2006, DGCI.
[7] Gabor Fulep,et al. Polyiamonds and Polyhexes with Minimum Site-Perimeter and Achievement Games , 2010, Electron. J. Comb..
[8] Robert A. Sulanke,et al. Moments of Generalized Motzkin Paths , 2000 .
[9] D. Klarner,et al. A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[10] Neal Madras,et al. A pattern theorem for lattice clusters , 1999 .
[11] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[12] Iwan Jensen,et al. Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.
[13] J. Hammersley,et al. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] Andrei Asinowski,et al. Enumerating Polyominoes with Fixed Perimeter Defect , 2017, Electron. Notes Discret. Math..
[15] Günter Rote,et al. Λ > 4: an Improved Lower Bound on the Growth Constant of Polyominoes , 2016, Commun. ACM.
[16] Da-Lun Wang,et al. Discrete Isoperimetric Problems , 1977 .
[17] Renzo Pinzani,et al. A Bijective Approach to the Area of Generalized Motzkin Paths , 2002, Adv. Appl. Math..