A spatially-regularized dynamic source localization algorithm for EEG
暂无分享,去创建一个
Emery N. Brown | Elvira Pirondini | Behtash Babadi | Camilo Lamus | Patrick L. Purdon | E. Brown | E. Pirondini | P. Purdon | Camilo Lamus | B. Babadi
[1] Simona Temereanca,et al. STATE-SPACE SOLUTIONS TO THE DYNAMIC MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM USING HIGH PERFORMANCE COMPUTING. , 2011, The annals of applied statistics.
[2] M. Hämäläinen,et al. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.
[3] Richard M. Leahy,et al. Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..
[4] Emery N. Brown,et al. PARAMETER ESTIMATION AND DYNAMIC SOURCE LOCALIZATION FOR THE MAGNETOENCEPHALOGRAPHY (MEG) INVERSE PROBLEM , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[5] C. Striebel,et al. On the maximum likelihood estimates for linear dynamic systems , 1965 .
[6] Emery N. Brown,et al. A spatiotemporal dynamic distributed solution to the MEG inverse problem , 2011, NeuroImage.
[7] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..
[8] Tohru Ozaki,et al. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering , 2004, NeuroImage.
[9] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[10] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .