An Interpretable and Sparse Neural Network Model for Nonlinear Granger Causality Discovery
暂无分享,去创建一个
Emily B. Fox | Ali Shojaie | Nicholas J. Foti | Alex Tank | E. Fox | A. Shojaie | N. Foti | Ian Cover | Alex Tank | Ian Cover
[1] Mathieu Salzmann,et al. Learning the Number of Neurons in Deep Networks , 2016, NIPS.
[2] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[3] A. Karimi,et al. Extensive chaos in the Lorenz-96 model. , 2009, Chaos.
[4] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[5] J. A. Stewart,et al. Nonlinear Time Series Analysis , 2015 .
[6] Naoki Abe,et al. Grouped graphical Granger modeling methods for temporal causal modeling , 2009, KDD.
[7] Ali Shojaie,et al. Network granger causality with inherent grouping structure , 2012, J. Mach. Learn. Res..
[8] Helmut Ltkepohl,et al. New Introduction to Multiple Time Series Analysis , 2007 .
[9] Max Welling,et al. Bayesian Compression for Deep Learning , 2017, NIPS.
[10] Timo Teräsvirta,et al. Modelling nonlinear economic time series , 2010 .
[11] William B. Nicholson,et al. Hierarchical Vector Autoregression , 2014 .
[12] Vikas Sindhwani,et al. Scalable Matrix-valued Kernel Learning for High-dimensional Nonlinear Multivariate Regression and Granger Causality , 2012, UAI.
[13] Alex Graves,et al. Supervised Sequence Labelling , 2012 .