Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes.

Effects of various surfactants on the transport of rhodamine123, a P-glycoprotein (P-gp) substrate, across the isolated rat intestinal membranes were examined by an in vitro diffusion chamber system. The jejunal serosal-to-mucosal transport (Jsm) of rhodamine123 was more than threefold greater than its mucosal-to-serosal transport (Jms), suggesting that the net movement of rhodamine123 across the rat jejunum was preferentially secretory direction. There exists a regional difference in the intestinal transport of rhodamine123 and the secretory directed transport was remarkably observed in the jejunum. The Jsm/Jms ratio of rhodamine123 decreased in the presence of 0.3 mM verapamil and 10 mM sodium azide (NaN3) + 1 mM sodium fluoride (NaF), confirming that rhodamine123 might be secreted from the intestinal tissue into the lumen by a P-gp-mediated efflux system. Nonionic surfactants [0.1% Cremophor EL, Tween 80 and n-dodecyl-beta-D-maltopyranoside (LM)] reduced the Jsm/Jms ratio of rhodamine123, whereas its ratio was not influenced in the presence of 0.1% cationic surfactant (hexadecyltrimethylammonium bromide, C16TAB) and anionic surfactant (sodium dodecyl sulfate, SDS). Therefore, these findings suggested that charge of surfactants was possibly related to the action of these surfactants on the intestinal absorption of P-gp substrates. On the other hand, the transfer of rhodamine123 was not affected by the addition of Cremophor EL to the serosal side. Because the c.m.c. of Cremophor EL is 0.0095 w/v%, interactions between rhodamine123 and the micellar form of Cremophor EL may decrease the P-gp-mediated efflux of rhodamine123 at higher concentrations. In the kinetic analysis, the Vmax value (nmol/min/g wet tissue) of rhodamine123 decreased, although the Km value (mM) was constant in the presence of Cremophor EL. Therefore, Cremophor EL inhibited the efflux transport of rhodamine123 in a noncompetitive manner. Cremophor EL did not affect the transport of [14C]Gly-Sar and [3H]3-O-methyl-D-glucose, suggesting that the action of Cremophor EL might be P-gp specific. These findings indicated that nonionic surfactants including Cremophor EL and Tween 80 may be useful pharmaceutical excipients for inhibiting the function of P-gp, thereby increasing the intestinal absorption of various drugs, which are secreted by a P-gp-mediated efflux system in the intestine.

[1]  K. Audus,et al.  Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. , 2002, Journal of pharmaceutical sciences.

[2]  P Langguth,et al.  Intestinal drug efflux: formulation and food effects. , 2001, Advanced drug delivery reviews.

[3]  A. F. Castro,et al.  Mechanism of inhibition of P-glycoprotein-mediated drug transport by protein kinase C blockers. , 1999, Biochemical pharmacology.

[4]  P Langguth,et al.  P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. , 1998, Journal of pharmaceutical sciences.

[5]  Muranishi Shozo,et al.  Assessment of enhancing ability of medium-chain alkyl saccharides as new absorption enhancers in rat rectum , 1992 .

[6]  Y. Sai,et al.  Active Secretion of Drugs from the Small Intestinal Epithelium in Rats by P‐Glycoprotein Functioning as an Absorption Barrier , 1996, The Journal of pharmacy and pharmacology.

[7]  G. Grass,et al.  In Vitro Measurement of Gastrointestinal Tissue Permeability Using a New Diffusion Cell , 1988, Pharmaceutical Research.

[8]  James E Polli,et al.  Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[9]  K. Higaki,et al.  Role of P-glycoprotein as a secretory mechanism in quinidine absorption from rat small intestine. , 1998, Journal of pharmaceutical sciences.

[10]  Ronald T Borchardt,et al.  A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. , 2002, Journal of pharmaceutical sciences.

[11]  V. H. Lee,et al.  Age-dependent Expression of P-Glycoprotein gp17O in Caco-2 Cell Monolayers , 1996, Pharmaceutical Research.

[12]  T. Fujita,et al.  Enhanced Permeability of Insulin across the Rat Intestinal Membrane by Various Absorption Enhancers: Their Intestinal Mucosal Toxicity and Absorption‐enhancing Mechanism of n‐Lauryl‐β‐D‐maltopyranoside , 1999, The Journal of pharmacy and pharmacology.

[13]  R. Borchardt,et al.  The Use of Surfactants to Enhance the Permeability of Peptides Through Caco-2 Cells by Inhibition of an Apically Polarized Efflux System , 1996, Pharmaceutical Research.

[14]  R. Borchardt,et al.  Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. , 1997, Journal of pharmaceutical sciences.

[15]  B. Hirst,et al.  Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption , 1997 .

[16]  T. Murakami,et al.  Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds. , 1999, The Journal of pharmacology and experimental therapeutics.

[17]  V. Ling,et al.  Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. , 1993, Cancer research.

[18]  K. Anderson,et al.  Reversal of multidrug resistance phenotype by surfactants: relationship to membrane lipid fluidity. , 1995, Archives of biochemistry and biophysics.

[19]  D. Miller,et al.  Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. , 1996, Life sciences.

[20]  B. Williams,et al.  Reversal of the multidrug resistance phenotype with cremophor EL, a common vehicle for water-insoluble vitamins and drugs. , 1990, Cancer research.