Function of pseudomonas porins in uptake and efflux.
暂无分享,去创建一个
[1] P. van Gelder,et al. Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.
[2] R. Hancock,et al. Membrane topology of the outer membrane protein OprH from Pseudomonas aeruginosa: PCR-mediated site-directed insertion and deletion mutagenesis , 1996, Journal of bacteriology.
[3] N. Gotoh,et al. Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay , 2001, Antimicrobial Agents and Chemotherapy.
[4] H. Yoneyama,et al. Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: construction of mutants with deletions in the multiple porin genes. , 1995, Biochemical and biophysical research communications.
[5] J. Wylie,et al. The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa , 1995, Journal of bacteriology.
[6] R. Hancock,et al. Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.
[7] H. Domdey,et al. Safety and immunogenicity of an intranasal Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. , 2001, Vaccine.
[8] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.
[9] R. N. Harty,et al. Chimeric animal and plant viruses expressing epitopes of outer membrane protein F as a combined vaccine against Pseudomonas aeruginosa lung infection. , 2000, FEMS immunology and medical microbiology.
[10] R. Hancock,et al. Roles of the Carboxy-Terminal Half of Pseudomonas aeruginosa Major Outer Membrane Protein OprF in Cell Shape, Growth in Low-Osmolarity Medium, and Peptidoglycan Association , 1998, Journal of bacteriology.
[11] M. Hofnung,et al. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K‐12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding , 1999, Molecular Microbiology.
[12] A. Martínez,et al. Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion , 1998, Molecular microbiology.
[13] J. Ingraham,et al. Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase , 1989, Journal of bacteriology.
[14] H. Nikaido. CHAPTER 4 – Outer Membrane Permeability of Pseudomonas aeruginosa , 1986 .
[15] V. Koronakis,et al. Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two‐dimensional crystals , 1997, Molecular microbiology.
[16] H. Nikaido,et al. Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.
[17] R. Hancock,et al. The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa , 1996, Journal of bacteriology.
[18] K. Poole,et al. Mutational Analysis of the OprM Outer Membrane Component of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2001, Journal of bacteriology.
[19] Fiona S. L. Brinkman,et al. Influence of a Putative ECF Sigma Factor on Expression of the Major Outer Membrane Protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens , 1999, Journal of bacteriology.
[20] R. Hancock,et al. Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa , 1993, Journal of bacteriology.
[21] N. Gotoh,et al. Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.
[22] J. Tommassen,et al. Protein secretion inPseudomonas aeruginosa , 1992 .
[23] R. Hancock,et al. Amino Acid-Mediated Induction of the Basic Amino Acid-Specific Outer Membrane Porin OprD from Pseudomonas aeruginosa , 1999, Journal of bacteriology.
[24] K. Nikaido,et al. Identification and characterization of porins in Pseudomonas aeruginosa. , 1991, The Journal of biological chemistry.
[25] R. Benz,et al. TolC of Escherichia coli functions as an outer membrane channel. , 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology.
[26] M. J. Lynch,et al. Emergence of resistance to imipenem in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.
[27] H. Yoneyama,et al. Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. , 1996, Microbiology.
[28] R. Hancock,et al. Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability , 1992, Journal of bacteriology.
[29] R. Hancock,et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.
[30] R. Hancock,et al. Role of Putative Loops 2 and 3 in Imipenem Passage through the Specific Porin OprD of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.
[31] R. Ankenbauer,et al. FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors , 1994, Journal of bacteriology.
[32] K. Poole,et al. Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa , 1993, Journal of bacteriology.
[33] K. Poole. Multidrug resistance in Gram-negative bacteria. , 2001, Current opinion in microbiology.
[34] B. Kieffer,et al. The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review). , 2000, Molecular membrane biology.
[35] M. Vasil,et al. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. , 2000, Microbiology.
[36] M. Vasil,et al. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence , 1999, Molecular microbiology.
[37] H. Yoneyama,et al. Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. , 1999, Antimicrobial agents and chemotherapy.
[38] Hiroshi Nikaido,et al. Multidrug resistance mechanisms: drug efflux across two membranes , 2000, Molecular microbiology.
[39] Robert E. W. Hancock,et al. Outer Membrane Proteins , 1998 .
[40] J. Tommassen,et al. Protein secretion in Pseudomonas aeruginosa. , 1992, FEMS microbiology reviews.
[41] J. Tommassen,et al. Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ferric-pseudobactin 358 receptor PupA , 1994, Molecular and General Genetics MGG.
[42] T. Yahr,et al. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway , 1996, Molecular microbiology.
[43] Kendy K. Y. Wong,et al. Evaluation of a Structural Model ofPseudomonas aeruginosa Outer Membrane Protein OprM, an Efflux Component Involved in Intrinsic Antibiotic Resistance , 2001, Journal of bacteriology.
[44] S. Hultgren,et al. Multiple pathways allow protein secretion across the bacterial outer membrane. , 2000, Current opinion in cell biology.
[45] D. Sherman,et al. Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.
[46] T. Nakae,et al. Outer membrane permeability of β‐lactamase inhibitors in Pseudomonas aeruginosa , 1995 .
[47] R. Hancock,et al. Membrane topology and site‐specific mutagenesis of Pseudomonas aeruginosa porin OprD , 1995, Molecular microbiology.
[48] N. Orange,et al. Involvement of the C-terminal part of Pseudomonas fluorescens OprF in the modulation of its pore-forming properties. , 2000, Biochimica et biophysica acta.
[49] E. Sugawara,et al. Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa , 1996, Journal of bacteriology.
[50] H. Nikaido,et al. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.
[51] J. Tommassen,et al. The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. , 1999, Journal of molecular biology.
[52] H. Nikaido,et al. Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. , 1988, Biochimica et biophysica acta.
[53] P. Klebba,et al. Mechanisms of solute transport through outer membrane porins: burning down the house. , 1998, Current opinion in microbiology.
[54] R. Hancock,et al. PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer‐membrane protein OprH and polymyxin B resistance , 1999, Molecular microbiology.
[55] J. Rosenbusch,et al. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.
[56] P. Weisbeek,et al. Identification and characterization of the pupB gene encoding an inducible ferric‐pseudobactin receptor of Pseudomonas putida WCS358 , 1993, Molecular microbiology.
[57] F. Pattus,et al. Iron‐free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport , 2001, Molecular microbiology.
[58] R. Hancock,et al. The Role of Specific Lysine Residues in the Passage of Anions through the Pseudomonas aeruginosa Porin OprP* , 1996, The Journal of Biological Chemistry.
[59] R. Hancock,et al. The Amino Terminus of Pseudomonas aeruginosaOuter Membrane Protein OprF Forms Channels in Lipid Bilayer Membranes: Correlation with a Three-Dimensional Model , 2000, Journal of bacteriology.
[60] G. Molle,et al. Ion channel formation by N-terminal domain: a common feature of OprFs of Pseudomonas and OmpA of Escherichia coli. , 2000, FEMS microbiology letters.
[61] H. Nikaido,et al. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. , 1990, The Journal of biological chemistry.
[62] R. Kadner,et al. Sequence Changes in the Ton Box Region of BtuB Affect Its Transport Activities and Interaction with TonB Protein , 2000, Journal of bacteriology.
[63] R. Hancock,et al. Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49. , 1996, FEMS microbiology letters.
[64] R. Hancock,et al. The bacterial outer membrane as a drug barrier. , 1997, Trends in microbiology.