Function of pseudomonas porins in uptake and efflux.

Porins are proteins that form water-filled channels across the outer membranes of Gram-negative bacteria and thus make this membrane semipermeable. There are four types of porins: general/nonspecific porins, substrate-specific porins, gated porins, and efflux porins (also called channel-tunnels). The recent publication of the genomic sequence of Pseudomonas aeruginosa PAO1 has dramatically increased our understanding of the porins of this organism. In particular this organism has 3 large families of porins: the OprD family of specific porins (19 members), the OprM family of efflux porins (18 members), and the TonB-interacting family of gated porins (35 members). These familial relationships underlie functional similarities such that well-studied members of these families become prototypes for other members. We summarize here the latest information on these porins.

[1]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[2]  R. Hancock,et al.  Membrane topology of the outer membrane protein OprH from Pseudomonas aeruginosa: PCR-mediated site-directed insertion and deletion mutagenesis , 1996, Journal of bacteriology.

[3]  N. Gotoh,et al.  Pseudomonas aeruginosa Reveals High Intrinsic Resistance to Penem Antibiotics: Penem Resistance Mechanisms and Their Interplay , 2001, Antimicrobial Agents and Chemotherapy.

[4]  H. Yoneyama,et al.  Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: construction of mutants with deletions in the multiple porin genes. , 1995, Biochemical and biophysical research communications.

[5]  J. Wylie,et al.  The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa , 1995, Journal of bacteriology.

[6]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[7]  H. Domdey,et al.  Safety and immunogenicity of an intranasal Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. , 2001, Vaccine.

[8]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[9]  R. N. Harty,et al.  Chimeric animal and plant viruses expressing epitopes of outer membrane protein F as a combined vaccine against Pseudomonas aeruginosa lung infection. , 2000, FEMS immunology and medical microbiology.

[10]  R. Hancock,et al.  Roles of the Carboxy-Terminal Half of Pseudomonas aeruginosa Major Outer Membrane Protein OprF in Cell Shape, Growth in Low-Osmolarity Medium, and Peptidoglycan Association , 1998, Journal of bacteriology.

[11]  M. Hofnung,et al.  In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K‐12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding , 1999, Molecular Microbiology.

[12]  A. Martínez,et al.  Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion , 1998, Molecular microbiology.

[13]  J. Ingraham,et al.  Properties of a Pseudomonas stutzeri outer membrane channel-forming protein (NosA) required for production of copper-containing N2O reductase , 1989, Journal of bacteriology.

[14]  H. Nikaido CHAPTER 4 – Outer Membrane Permeability of Pseudomonas aeruginosa , 1986 .

[15]  V. Koronakis,et al.  Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two‐dimensional crystals , 1997, Molecular microbiology.

[16]  H. Nikaido,et al.  Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides , 1999, Antimicrobial Agents and Chemotherapy.

[17]  R. Hancock,et al.  The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[18]  K. Poole,et al.  Mutational Analysis of the OprM Outer Membrane Component of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2001, Journal of bacteriology.

[19]  Fiona S. L. Brinkman,et al.  Influence of a Putative ECF Sigma Factor on Expression of the Major Outer Membrane Protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens , 1999, Journal of bacteriology.

[20]  R. Hancock,et al.  Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[21]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[22]  J. Tommassen,et al.  Protein secretion inPseudomonas aeruginosa , 1992 .

[23]  R. Hancock,et al.  Amino Acid-Mediated Induction of the Basic Amino Acid-Specific Outer Membrane Porin OprD from Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[24]  K. Nikaido,et al.  Identification and characterization of porins in Pseudomonas aeruginosa. , 1991, The Journal of biological chemistry.

[25]  R. Benz,et al.  TolC of Escherichia coli functions as an outer membrane channel. , 1993, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[26]  M. J. Lynch,et al.  Emergence of resistance to imipenem in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.

[27]  H. Yoneyama,et al.  Protein C (OprC) of the outer membrane of Pseudomonas aeruginosa is a copper-regulated channel protein. , 1996, Microbiology.

[28]  R. Hancock,et al.  Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability , 1992, Journal of bacteriology.

[29]  R. Hancock,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[30]  R. Hancock,et al.  Role of Putative Loops 2 and 3 in Imipenem Passage through the Specific Porin OprD of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[31]  R. Ankenbauer,et al.  FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors , 1994, Journal of bacteriology.

[32]  K. Poole,et al.  Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[33]  K. Poole Multidrug resistance in Gram-negative bacteria. , 2001, Current opinion in microbiology.

[34]  B. Kieffer,et al.  The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review). , 2000, Molecular membrane biology.

[35]  M. Vasil,et al.  Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. , 2000, Microbiology.

[36]  M. Vasil,et al.  The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence , 1999, Molecular microbiology.

[37]  H. Yoneyama,et al.  Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. , 1999, Antimicrobial agents and chemotherapy.

[38]  Hiroshi Nikaido,et al.  Multidrug resistance mechanisms: drug efflux across two membranes , 2000, Molecular microbiology.

[39]  Robert E. W. Hancock,et al.  Outer Membrane Proteins , 1998 .

[40]  J. Tommassen,et al.  Protein secretion in Pseudomonas aeruginosa. , 1992, FEMS microbiology reviews.

[41]  J. Tommassen,et al.  Localization of functional domains in the Escherichia coli coprogen receptor FhuE and the Pseudomonas putida ferric-pseudobactin 358 receptor PupA , 1994, Molecular and General Genetics MGG.

[42]  T. Yahr,et al.  Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway , 1996, Molecular microbiology.

[43]  Kendy K. Y. Wong,et al.  Evaluation of a Structural Model ofPseudomonas aeruginosa Outer Membrane Protein OprM, an Efflux Component Involved in Intrinsic Antibiotic Resistance , 2001, Journal of bacteriology.

[44]  S. Hultgren,et al.  Multiple pathways allow protein secretion across the bacterial outer membrane. , 2000, Current opinion in cell biology.

[45]  D. Sherman,et al.  Characterization of a Pseudomonas aeruginosa Efflux Pump Contributing to Aminoglycoside Impermeability , 1999, Antimicrobial Agents and Chemotherapy.

[46]  T. Nakae,et al.  Outer membrane permeability of β‐lactamase inhibitors in Pseudomonas aeruginosa , 1995 .

[47]  R. Hancock,et al.  Membrane topology and site‐specific mutagenesis of Pseudomonas aeruginosa porin OprD , 1995, Molecular microbiology.

[48]  N. Orange,et al.  Involvement of the C-terminal part of Pseudomonas fluorescens OprF in the modulation of its pore-forming properties. , 2000, Biochimica et biophysica acta.

[49]  E. Sugawara,et al.  Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[50]  H. Nikaido,et al.  Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa , 1995, Antimicrobial agents and chemotherapy.

[51]  J. Tommassen,et al.  The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. , 1999, Journal of molecular biology.

[52]  H. Nikaido,et al.  Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. , 1988, Biochimica et biophysica acta.

[53]  P. Klebba,et al.  Mechanisms of solute transport through outer membrane porins: burning down the house. , 1998, Current opinion in microbiology.

[54]  R. Hancock,et al.  PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer‐membrane protein OprH and polymyxin B resistance , 1999, Molecular microbiology.

[55]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[56]  P. Weisbeek,et al.  Identification and characterization of the pupB gene encoding an inducible ferric‐pseudobactin receptor of Pseudomonas putida WCS358 , 1993, Molecular microbiology.

[57]  F. Pattus,et al.  Iron‐free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport , 2001, Molecular microbiology.

[58]  R. Hancock,et al.  The Role of Specific Lysine Residues in the Passage of Anions through the Pseudomonas aeruginosa Porin OprP* , 1996, The Journal of Biological Chemistry.

[59]  R. Hancock,et al.  The Amino Terminus of Pseudomonas aeruginosaOuter Membrane Protein OprF Forms Channels in Lipid Bilayer Membranes: Correlation with a Three-Dimensional Model , 2000, Journal of bacteriology.

[60]  G. Molle,et al.  Ion channel formation by N-terminal domain: a common feature of OprFs of Pseudomonas and OmpA of Escherichia coli. , 2000, FEMS microbiology letters.

[61]  H. Nikaido,et al.  Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. , 1990, The Journal of biological chemistry.

[62]  R. Kadner,et al.  Sequence Changes in the Ton Box Region of BtuB Affect Its Transport Activities and Interaction with TonB Protein , 2000, Journal of bacteriology.

[63]  R. Hancock,et al.  Role of gyrA mutation and loss of OprF in the multiple antibiotic resistance phenotype of Pseudomonas aeruginosa G49. , 1996, FEMS microbiology letters.

[64]  R. Hancock,et al.  The bacterial outer membrane as a drug barrier. , 1997, Trends in microbiology.