Long-haul transmission of16×52.5 Gbits/s polarization-division- multiplexed OFDM enabled by MIMO processing (Invited)

Focus Issue on Orthogonal-Frequency-Division Multiplexed Communications Systems and Networks We discuss the realization and performance of polarization-division-multiplexed orthogonal frequency division multiplexing (PDM-OFDM) for long-haul transmission systems. Polarization demultiplexing of the PDM signal at the receiver is realized by employing a multiple-input multiple-output (MIMO) detector. Using a recirculating loop a long-haul transmission experiment is reported of 52.5 Gbits/s PDM-OFDM (40 Gbits/s after coding) over 4160 km of standard single-mode fiber (SSMF). In this transmission experiment, 16 wavelength-division-multiplexed (WDM) channels are transmitted at 50 GHz channel spacing, and we show that MIMO processing in the receiver enables both polarization demultiplexing and a large PMD tolerance.

[1]  W. Shieh,et al.  Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems. , 2007, Optics express.

[2]  Sander L. Jansen,et al.  10-Gb/s OFDM with conventional DFB lasers , 2007 .

[3]  T. Duthel,et al.  10 x 111 Gbit/s 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalisation , 2007, OFC 2007.

[4]  William Shieh,et al.  Phase Noise on Coherent Optical OFDM Systems with 16-QAM and 64-QAM beyond 10 Gb/s , 2007 .

[5]  Marc Moeneclaey,et al.  BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise , 1995, IEEE Trans. Commun..

[6]  Markus Mayrock,et al.  PMD Tolerant Direct-Detection Optical OFDM System , 2007 .

[7]  Jack H. Winters,et al.  On the Capacity of Radio Communication Systems with Diversity in a Rayleigh Fading Environment , 1987, IEEE J. Sel. Areas Commun..

[8]  R. Hui,et al.  Subcarrier multiplexing for high-speed optical transmission , 2002 .

[9]  Marc Moonen,et al.  Optimal training design for MIMO OFDM systems in mobile wireless channels , 2003, IEEE Trans. Signal Process..

[10]  Tim Schenk,et al.  RF Imperfections in High-rate Wireless Systems , 2008 .

[11]  R. V. Nee,et al.  Maximum likelihood decoding in a space division multiplexing system , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[12]  Tim C. W. Schenk,et al.  Implementation of a MIMO OFDM-based wireless LAN system , 2004, IEEE Transactions on Signal Processing.

[13]  Guifang Li,et al.  Coherent optical communication using polarization multiple-input-multiple-output. , 2005, Optics express.

[14]  H. de Waardt,et al.  PMD-induced transmission penalties in polarization-multiplexed transmission , 2005, Journal of Lightwave Technology.

[15]  William Shieh Maximum-Likelihood Phase Estimation for Coherent Optical OFDM , 2007 .

[16]  S. Randel,et al.  24-Gb/s Transmission over 730 m of Multimode Fiber by Direct Modulation of an 850-nm VCSEL Using Discrete Multi-Tone Modulation , 2007, OFC 2007.

[17]  Bane Vasic,et al.  Orthogonal frequency division multiplexing for high-speed optical transmission. , 2006, Optics express.

[18]  Donald C. Cox,et al.  Robust frequency and timing synchronization for OFDM , 1997, IEEE Trans. Commun..

[19]  A. Gnauck,et al.  25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals , 2007, OFC 2007.

[20]  I. Morita,et al.  Coherent Optical 25.8-Gb/s OFDM Transmission Over 4160-km SSMF , 2008, Journal of Lightwave Technology.

[21]  A. Lowery,et al.  Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter , 2007, OFC 2007.

[22]  Liang Du,et al.  Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[23]  Reinaldo A. Valenzuela,et al.  V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).

[24]  Yutaka Miyamoto,et al.  20.4-Tb/s (204 × 111 Gb/s) Transmission over 240 km Using Bandwidth-Maximized Hybrid Raman/EDFAs , 2007, OFC 2007.