Super‐Resolution Ultrasound Imaging of Skeletal Muscle Microvascular Dysfunction in an Animal Model of Type 2 Diabetes

To evaluate the use of super‐resolution ultrasound (SR‐US) imaging for quantifying microvascular changes in skeletal muscle using a mouse model of type 2 diabetes.

[1]  M. Ezzati,et al.  National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants , 2011, The Lancet.

[2]  A. Wagenmakers,et al.  Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing , 2016, The Journal of physiology.

[3]  Kenneth Hoyt,et al.  Toward optimization of in vivo super‐resolution ultrasound imaging using size‐selected microbubble contrast agents , 2017, Medical physics.

[4]  C. Dunsby,et al.  3-D In Vitro Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[5]  Matthew Bruce,et al.  Ultrasound Contrast Imaging Research , 2003, Ultrasound quarterly.

[6]  Meaghan A. O'Reilly,et al.  A super-resolution ultrasound method for brain vascular mapping. , 2013, Medical physics.

[7]  Charlie Demené,et al.  Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity , 2015, IEEE Transactions on Medical Imaging.

[8]  Robert J. Eckersley,et al.  In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles , 2015, IEEE Transactions on Medical Imaging.

[9]  Debabrata Ghosh,et al.  Hyposialylated IgG activates endothelial IgG receptor Fc&ggr;RIIB to promote obesity-induced insulin resistance , 2017, The Journal of clinical investigation.

[10]  S. Kaul,et al.  Temporal Changes in Skeletal Muscle Capillary Responses and Endothelial-Derived Vasodilators in Obesity-Related Insulin Resistance , 2016, Diabetes.

[11]  Georg Schmitz,et al.  Detection and Tracking of Multiple Microbubbles in Ultrasound B-Mode Images , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[12]  T. Kodama,et al.  Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. , 2011, Cell metabolism.

[13]  C. Dietrich,et al.  An EFSUMB Introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for Quantification of Tumour Perfusion , 2012, Ultraschall in der Medizin.

[14]  E. Barrett,et al.  Obesity Blunts Microvascular Recruitment in Human Forearm Muscle After a Mixed Meal , 2009, Diabetes Care.

[15]  J. V. van Engelshoven,et al.  Spinal cord feeding arteries at MR angiography for thoracoscopic spinal surgery: feasibility study and implications for surgical approach. , 2004, Radiology.

[16]  Kenneth Hoyt,et al.  Ultrasound imaging of breast tumor perfusion and neovascular morphology. , 2015, Ultrasound in medicine & biology.

[17]  E. Barrett,et al.  Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. , 2004, Diabetes.

[18]  Mickael Tanter,et al.  Sono-activated ultrasound localization microscopy , 2013 .

[19]  J. Després,et al.  Abdominal obesity and metabolic syndrome , 2006, Nature.

[20]  Kenneth Hoyt,et al.  Monitoring early tumor response to vascular targeted therapy using super-resolution ultrasound imaging , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[21]  Ian J. Brown,et al.  Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. , 2014, The lancet. Diabetes & endocrinology.

[22]  E. Barrett,et al.  Obesity Blunts Insulin-Mediated Microvascular Recruitment in Human Forearm Muscle , 2006, Diabetes.

[23]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[24]  S. Kaul,et al.  Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. , 2002, American journal of physiology. Endocrinology and metabolism.

[25]  P Aspelin,et al.  Bolus compared with continuous infusion of microbubble contrast agent using real-time contrast harmonic imaging ultrasound in breast tumors , 2009, Acta radiologica.

[26]  Mark Borden,et al.  Microbubble Compositions, Properties and Biomedical Applications. , 2009, Bubble science engineering and technology.

[27]  R. Eckel,et al.  Obesity and type 2 diabetes: what can be unified and what needs to be individualized? , 2011, The Journal of clinical endocrinology and metabolism.

[28]  G. Reaven Role of Insulin Resistance in Human Disease , 1988, Diabetes.

[29]  D. Stella,et al.  Three‐dimensional CT angiography: A new technique for imaging microvascular anatomy , 2007, Clinical anatomy.

[30]  W. Hsueh,et al.  Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus , 2014, Therapeutics and clinical risk management.

[31]  C Dunsby,et al.  Acoustic super-resolution with ultrasound and microbubbles , 2013, Physics in medicine and biology.

[32]  Marc Suhrcke,et al.  The Economic Costs of Type 2 Diabetes: A Global Systematic Review , 2015, PharmacoEconomics.

[33]  Paul A. Dayton,et al.  3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound , 2017, Theranostics.

[34]  Kenneth Hoyt,et al.  Recent developments in dynamic contrast-enhanced ultrasound imaging of tumor angiogenesis. , 2014, Imaging in medicine.

[35]  C. Ziegler,et al.  Three‐dimensional CT angiography: A new technique for imaging microvascular anatomy , 2007, Clinical anatomy.

[36]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[37]  J. Lindner,et al.  Contrast-Enhanced Ultrasound Assessment of Impaired Adipose Tissue and Muscle Perfusion in Insulin-Resistant Mice , 2015, Circulation. Cardiovascular imaging.

[38]  L Barozzi,et al.  The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): Update 2011 on non-hepatic applications , 2011, Ultraschall in der Medizin.

[39]  J. Lindner,et al.  Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates , 2016, International Journal of Obesity.

[40]  M. Tanter,et al.  Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging , 2015, Nature.

[41]  G. Farhat,et al.  Diagnostic ultrasound Imaging : Inside out , 2004 .

[42]  J. Sowers,et al.  Insulin Resistance and Skeletal Muscle Vasculature: Significance, Assessment and Therapeutic Modulators , 2014, Cardiorenal Medicine.