Torsion in thin-walled cold-formed steel beams

Thin-walled cold-formed steel members have wide applications in building structures. They can be used as individual structural framing members or as panels and decks. In general, cold-formed steel beams have open sections where centroid and shear center do not coincide. When a transverse load is applied away from the shear center it causes torque. Because of the open nature of the sections, torsion induces warping in the beam. This paper summarizes the research on the behavior of cold-formed steel beams subject to torsion and bending. The attention is focused on beams subject to torque, because of the effect of transverse loads not applied at the shear center. A simple geometric nonlinear analysis method, based on satisfying equilibrium in the deformed configuration, is examined and used to predict the behavior of the beams. Simple geometric analyses, finite element analyses and finite strip analyses are performed and compared with experimental results. The influence of typical support conditions is studied and they are found to produce partial warping restraint at the ends. This effect is accounted for by introducing hypothetical springs. The magnitude of the spring stiffness is assessed for commonly used connections. Other factors that affect the behavior of cold-formed steel members, such as local buckling, are also studied.