A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation.

[1]  S. Hell,et al.  MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation , 2020, The EMBO journal.

[2]  A. Reichert,et al.  Cristae undergo continuous cycles of membrane remodelling in a MICOS‐dependent manner , 2020, EMBO reports.

[3]  Katsuaki Sato,et al.  ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue , 2020, Life Science Alliance.

[4]  P. Puigserver,et al.  ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis. , 2019, Molecular cell.

[5]  A. Reichert,et al.  Cristae undergo continuous cycles of fusion and fission in a MICOS-dependent manner , 2019, bioRxiv.

[6]  Shi Chen,et al.  Sam50–Mic19–Mic60 axis determines mitochondrial cristae architecture by mediating mitochondrial outer and inner membrane contact , 2019, Cell Death & Differentiation.

[7]  S. Matsumoto,et al.  Myristoyl group-aided protein import into the mitochondrial intermembrane space , 2019, Scientific Reports.

[8]  A. Heck,et al.  Crosstalk between phosphorylation and O‐GlcNAcylation: friend or foe , 2018, The FEBS journal.

[9]  T. Mühlhaus,et al.  Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences , 2018, The Journal of cell biology.

[10]  T. Kawada,et al.  Supra-pharmacological concentration of capsaicin stimulates brown adipogenesis through induction of endoplasmic reticulum stress , 2018, Scientific Reports.

[11]  N. Casals,et al.  Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice , 2017, Scientific Reports.

[12]  S. Maurya,et al.  Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice , 2017, The Journal of Biological Chemistry.

[13]  N. Pfanner,et al.  Mitochondrial Machineries for Protein Import and Assembly. , 2017, Annual review of biochemistry.

[14]  B. Spiegelman,et al.  UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction , 2017, Proceedings of the National Academy of Sciences.

[15]  N. Pfanner,et al.  Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. , 2017, Biochimica et biophysica acta. Molecular cell research.

[16]  J. Rieusset,et al.  Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases , 2017, Trends in Endocrinology & Metabolism.

[17]  Jiahui Tao,et al.  The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization , 2017, The Journal of Biological Chemistry.

[18]  Sean J. Humphrey,et al.  Phosphorylation Is a Central Mechanism for Circadian Control of Metabolism and Physiology. , 2017, Cell metabolism.

[19]  L. Gan,et al.  Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue , 2016, Oncotarget.

[20]  Sean J. Humphrey,et al.  Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion , 2016, Nature Communications.

[21]  S. Walker,et al.  How the glycosyltransferase OGT catalyzes amide bond cleavage , 2016, Nature chemical biology.

[22]  H. Kosako,et al.  PKA Regulates PINK1 Stability and Parkin Recruitment to Damaged Mitochondria through Phosphorylation of MIC60. , 2016, Molecular cell.

[23]  L. Scorrano,et al.  Mitochondrial Cristae: Where Beauty Meets Functionality. , 2016, Trends in biochemical sciences.

[24]  S. Chen,et al.  Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization , 2015, Cell Death and Differentiation.

[25]  E. Tan,et al.  Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases , 2016, Molecular Neurobiology.

[26]  S. Kajimura,et al.  Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. , 2015, Cell metabolism.

[27]  B. Spiegelman,et al.  A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat , 2015, Cell.

[28]  S. Jakobs,et al.  The Oxidation Status of Mic19 Regulates MICOS Assembly , 2015, Molecular and Cellular Biology.

[29]  Z. Liu,et al.  Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate , 2015, Cell Death and Disease.

[30]  B. Spiegelman,et al.  Brown and Beige Fat: Molecular Parts of a Thermogenic Machine , 2015, Diabetes.

[31]  L. Scorrano,et al.  Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models , 2015, Cell metabolism.

[32]  R. Lecomte,et al.  In vivo measurement of energy substrate contribution to cold‐induced brown adipose tissue thermogenesis , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  Justin Yamada,et al.  MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture , 2015, eLife.

[34]  Sebastian Straub,et al.  Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits , 2015, PloS one.

[35]  Z. Ronai,et al.  UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. , 2015, Trends in biochemical sciences.

[36]  G. Hart,et al.  Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. , 2014, Cell metabolism.

[37]  Kyoung-Jae Won,et al.  Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. , 2014, Cell metabolism.

[38]  N. Pfanner,et al.  The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. , 2014, Cell metabolism.

[39]  J. Shabanowitz,et al.  Cross-talk between Two Essential Nutrient-sensitive Enzymes , 2014, The Journal of Biological Chemistry.

[40]  Sara Cipolat,et al.  Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency , 2013, Cell.

[41]  B. Spiegelman,et al.  Adaptive thermogenesis in adipocytes: is beige the new brown? , 2013, Genes & development.

[42]  Derek J. Bailey,et al.  A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. , 2012, Cell metabolism.

[43]  I. Bertini,et al.  Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins. , 2012, Journal of structural biology.

[44]  Susan S. Taylor,et al.  Targeting and Import Mechanism of Coiled-coil Helix Coiled-coil Helix Domain-containing Protein 3 (ChChd3) into the Mitochondrial Intermembrane Space , 2012, The Journal of Biological Chemistry.

[45]  V. Pertegato,et al.  Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells , 2012, Nature Protocols.

[46]  A. Burlingame,et al.  Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse* , 2012, Molecular & Cellular Proteomics.

[47]  G. Hart,et al.  Regulation of CK2 by Phosphorylation and O-GlcNAcylation Revealed by Semisynthesis , 2011, Nature chemical biology.

[48]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[49]  Jason C. Young,et al.  Interaction between the Human Mitochondrial Import Receptors Tom20 and Tom70 in Vitro Suggests a Chaperone Displacement Mechanism* , 2011, The Journal of Biological Chemistry.

[50]  G. Hart,et al.  Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. , 2011, Annual review of biochemistry.

[51]  D. Ron,et al.  The structure of the PERK kinase domain suggests the mechanism for its activation. , 2011, Acta crystallographica. Section D, Biological crystallography.

[52]  Oliver T. Bruns,et al.  Brown adipose tissue activity controls triglyceride clearance , 2011, Nature Medicine.

[53]  Jason C. Young,et al.  Function of cytosolic chaperones in Tom70-mediated mitochondrial import. , 2011, Protein and peptide letters.

[54]  B. Schönfisch,et al.  Regulation of Mitochondrial Protein Import by Cytosolic Kinases , 2011, Cell.

[55]  M. Vrbacký,et al.  Uncoupling protein-1 is not leaky. , 2010, Biochimica et biophysica acta.

[56]  Mason R. Mackey,et al.  ChChd3, an Inner Mitochondrial Membrane Protein, Is Essential for Maintaining Crista Integrity and Mitochondrial Function , 2010, The Journal of Biological Chemistry.

[57]  P. Pinton,et al.  Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells , 2009, Nature Protocols.

[58]  K. Fukui,et al.  Roles of Tom70 in Import of Presequence-containing Mitochondrial Proteins* , 2009, The Journal of Biological Chemistry.

[59]  G. Hart,et al.  Regulation of the O-Linked β-N-Acetylglucosamine Transferase by Insulin Signaling* , 2008, Journal of Biological Chemistry.

[60]  R. Jensen,et al.  Tom20 and Tom22 Share the Common Signal Recognition Pathway in Mitochondrial Protein Import* , 2008, Journal of Biological Chemistry.

[61]  Jason C. Young,et al.  Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. , 2007, Molecular biology of the cell.

[62]  A. Reichert,et al.  Dynamic subcompartmentalization of the mitochondrial inner membrane , 2006, The Journal of cell biology.

[63]  S. Jakobs,et al.  Differential protein distributions define two sub‐compartments of the mitochondrial inner membrane in yeast , 2006, FEBS letters.

[64]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[65]  Jiandie D. Lin,et al.  Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. , 2006, Cell metabolism.

[66]  R. Hamanaka,et al.  PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. , 2005, Molecular biology of the cell.

[67]  M. Mori,et al.  Mitochondrial Import Receptors Tom20 and Tom22 Have Chaperone-like Activity* , 2004, Journal of Biological Chemistry.

[68]  Randal J. Kaufman,et al.  Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival , 2003, Molecular and Cellular Biology.

[69]  Nicholas J. Hoogenraad,et al.  Molecular Chaperones Hsp90 and Hsp70 Deliver Preproteins to the Mitochondrial Import Receptor Tom70 , 2003, Cell.

[70]  N. Pfanner,et al.  The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria , 2001, The EMBO journal.

[71]  M. Connor,et al.  Tom20-mediated mitochondrial protein import in muscle cells during differentiation. , 2000, American journal of physiology. Cell physiology.

[72]  H. McBride,et al.  The central matrix loop drives import of uncoupling protein 1 into mitochondria. , 2000, Journal of cell science.

[73]  D. Kohda,et al.  Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20 , 2000, Cell.

[74]  J. Schneider-Mergener,et al.  Distribution of Binding Sequences for the Mitochondrial Import Receptors Tom20, Tom22, and Tom70 in a Presequence-carrying Preprotein and a Non-cleavable Preprotein* , 1999, The Journal of Biological Chemistry.

[75]  D. Ron,et al.  Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase , 1999, Nature.

[76]  K. Terada,et al.  Participation of the import receptor Tom20 in protein import into mammalian mitochondria: analyses in vitro and in cultured cells , 1997, FEBS letters.

[77]  W. Neupert,et al.  A mitochondrial import receptor for the ADP/ATP carrier , 1990, Cell.

[78]  R. Davis,et al.  The effect of beta-adrenergic agonists on the membrane potential of fat-cell mitochondria in situ. , 1982, The Biochemical journal.