On minimizing distortion and relative entropy
暂无分享,去创建一个
[1] Jeffrey Owen Katz,et al. The Encyclopedia of Trading Strategies , 2000 .
[2] Maya R. Gupta,et al. Simulating the effect of illumination using color transformations , 2005, IS&T/SPIE Electronic Imaging.
[3] Philip E. Gill,et al. Practical optimization , 1981 .
[4] Tommi S. Jaakkola,et al. Maximum Entropy Discrimination , 1999, NIPS.
[5] N. N. Chent︠s︡ov. Statistical decision rules and optimal inference , 1982 .
[6] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[7] H. Gzyl,et al. Maxentropic interpolation by cubic splines with possibly noisy data , 2001 .
[8] Guy Le Besnerais,et al. The Maximum Entropy on the Mean Method, Noise and Sensitivity , 1996 .
[9] I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .
[10] Jon W. Tolle,et al. Exact penalty functions in nonlinear programming , 1973, Math. Program..
[11] Imre Csiszár,et al. MEM pixel correlated solutions for generalized moment and interpolation problems , 1999, IEEE Trans. Inf. Theory.
[12] Maya R. Gupta,et al. Analysis and classification of internal pipeline images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[13] P. A. Mello,et al. Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations. A Maximum Entropy Viewpoint , 2004 .
[14] Maya R. Gupta,et al. Reducing bias in supervised learning , 2003, IEEE Workshop on Statistical Signal Processing, 2003.
[15] J. Cadzow. Maximum Entropy Spectral Analysis , 2006 .
[16] Guy Le Besnerais,et al. A new look at entropy for solving linear inverse problems , 1999, IEEE Trans. Inf. Theory.
[17] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[18] T. Pietrzykowski. An Exact Potential Method for Constrained Maxima , 1969 .
[19] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[20] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[21] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[22] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[23] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[24] J. L. Hodges,et al. Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .
[25] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[26] P. A. Mello,et al. Quantum Transport in Mesoscopic Systems , 2004 .
[27] Jan Vlcek,et al. Interior point methods for large-scale nonlinear programming , 2005, Optim. Methods Softw..
[28] L. Lorne Campbell. Minimum cross-entropy estimation with inaccurate side information , 1999, IEEE Trans. Inf. Theory.
[29] Justin Buchler. The Philosophy of Peirce: Selected Writings , 1941 .
[30] R. Fletcher. Practical Methods of Optimization , 1988 .
[31] Jorge Nocedal,et al. An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..
[32] J. Navaza,et al. The use of non‐local constraints in maximum‐entropy electron density reconstruction , 1986 .
[33] W. T. Grandy,et al. Physics and Probability , 2004 .
[34] Robert J. Vanderbei,et al. An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..
[35] Sanjeev R. Kulkarni,et al. Learning Pattern Classification - A Survey , 1998, IEEE Trans. Inf. Theory.
[36] I. Csiszár. Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .
[37] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[38] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[39] Maya Rani Gupta,et al. An information theory approach to supervised learning , 2003 .
[40] Maya R. Gupta. Inverting color transforms , 2004, IS&T/SPIE Electronic Imaging.