Actuators for the generation of highly nonlinear solitary waves.

In this paper we present the design of two actuators for the generation of highly nonlinear solitary waves (HNSWs), which are mechanical waves that can form and travel in highly nonlinear systems. These waves are characterized by a constant spatial wavelength and by a tunable propagation speed, dependent on the wave amplitude. To date, the simplest and widely adopted method to generate HNSWs is by impacting a striker onto a chain of beads of equal size and mass. This operation is conducted manually and it might be impracticable if repetition rates higher than 0.1 Hz are necessary. It is known that the HNSWs' properties, such as amplitude, duration, and speed can be modified by changing the size or the material of the particles, the velocity of the striker, and/or the precompression on the chain. To address the limitations associated with the manual generation of HNSWs we designed, built, and tested two actuators. The first actuator consists of a chain of particles wrapped by an electromagnet that induces static precompression on the chain. This design allows for the generation of solitary waves with controlled properties. The second actuator consists of a chain surmounted by an electromagnet that lifts and releases a striker. This actuator permits the remote and noncontact generation of solitary waves. The performance of both actuators is evaluated by comparing the experimental HNSWs to theoretical predictions, based on the long wavelength approximation.

[1]  Jongbae Hong,et al.  Universal power-law decay of the impulse energy in granular protectors. , 2005, Physical review letters.

[2]  C. Daraio,et al.  Energy trapping and shock disintegration in a composite granular medium. , 2006, Physical review letters.

[3]  C. Daraio,et al.  Strongly nonlinear waves in a chain of Teflon beads. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Eric Falcon,et al.  Solitary waves in a chain of beads under Hertz contact , 1997 .

[5]  Mason A. Porter,et al.  Highly Nonlinear Solitary Waves in Heterogeneous Periodic Granular Media , 2007, 0712.3552.

[6]  Adam Sokolow,et al.  How hertzian solitary waves interact with boundaries in a 1D granular medium. , 2005, Physical review letters.

[7]  Surajit Sen,et al.  Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities , 1998 .

[8]  Mason A Porter,et al.  Highly nonlinear solitary waves in periodic dimer granular chains. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  C Daraio,et al.  Anomalous wave reflection at the interface of two strongly nonlinear granular media. , 2005, Physical review letters.

[10]  C. Daraio,et al.  Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap , 2009 .

[11]  C Daraio,et al.  Strongly nonlinear wave dynamics in a chain of polymer coated beads. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Alessandro Spadoni,et al.  Generation and control of sound bullets with a nonlinear acoustic lens , 2009, Proceedings of the National Academy of Sciences.

[13]  Model for dissipative highly nonlinear waves in dry granular systems. , 2010, Physical review letters.

[14]  Bruno Gilles,et al.  On the validity of Hertz contact law for granular material acoustics , 1999 .

[15]  V. Nesterenko,et al.  Propagation of nonlinear compression pulses in granular media , 1984 .

[16]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[17]  POWER LAWS IN NONLINEAR GRANULAR CHAIN UNDER GRAVITY , 1998, cond-mat/9812137.

[18]  Mason A Porter,et al.  Dissipative solitary waves in granular crystals. , 2008, Physical review letters.

[19]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[20]  Fernando Fraternali,et al.  Optimal Design of Composite Granular Protectors , 2008, 0802.1451.

[21]  Chiara Daraio,et al.  Novel sensor technology for NDE of concrete , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[22]  Aiguo Xu,et al.  Nondestructive identification of impurities in granular medium , 2002 .

[23]  I. Kevrekidis,et al.  Localized breathing modes in granular crystals with defects. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Paul D. Wilcox,et al.  7th International Workshop on Structural Health Monitoring, Stanford University, Palo Alto, CA, USA , 2009 .

[25]  Piervincenzo Rizzo,et al.  Coupling of highly nonlinear waves with linear elastic media , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[26]  A. Hurd,et al.  The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems. (II). Backscattering , 1999 .

[27]  Xianglei Ni,et al.  Laser induced highly nonlinear solitary waves for structural NDE , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  A. Hurd,et al.  The propagation and backscattering of soliton-like pulses in a chain of quartz beads and related problems. (I). Propagation , 1999 .

[29]  C. Daraio,et al.  Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.