Pseudomonas aeruginosa strains from the chronically infected cystic fibrosis lung display increased invasiveness of A549 epithelial cells over time.

[1]  Torsten Seemann,et al.  Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung , 2011, PloS one.

[2]  A. Stenbit,et al.  Pulmonary exacerbations in cystic fibrosis , 2011, Current opinion in pulmonary medicine.

[3]  J. Arthur,et al.  Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. , 2010, Journal of medical microbiology.

[4]  Rebecca Barnes,et al.  Cellular responses of A549 alveolar epithelial cells to serially collected Pseudomonas aeruginosa from cystic fibrosis patients at different stages of pulmonary infection. , 2010, FEMS immunology and medical microbiology.

[5]  M. Elkins,et al.  Clinical profile of adult cystic fibrosis patients with frequent epidemic clones of Pseudomonas aeruginosa , 2010, Respirology.

[6]  S. Lory,et al.  The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 Is Transferred via a Novel Type IV Pilus , 2010, Journal of bacteriology.

[7]  Zixin Deng,et al.  Pathogenicity Islands PAPI-1 and PAPI-2 Contribute Individually and Synergistically to the Virulence of Pseudomonas aeruginosa Strain PA14 , 2010, Infection and Immunity.

[8]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[9]  A. Oliver,et al.  Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. , 2009, Microbiology.

[10]  Colin Harbour,et al.  Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. , 2008, Journal of medical microbiology.

[11]  David J. Evans,et al.  Pseudomonas aeruginosa Induces Membrane Blebs in Epithelial Cells, Which Are Utilized as a Niche for Intracellular Replication and Motility , 2008, Infection and Immunity.

[12]  M. Gadjeva,et al.  Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. , 2008, Trends in molecular medicine.

[13]  A. Prince,et al.  The Type III Toxins of Pseudomonas aeruginosa Disrupt Epithelial Barrier Function , 2007, Journal of bacteriology.

[14]  Lucas Smith,et al.  Phenotypic Characterization of Clonal and Nonclonal Pseudomonas aeruginosa Strains Isolated from Lungs of Adults with Cystic Fibrosis , 2007, Journal of Clinical Microbiology.

[15]  M. Elkins,et al.  Protease IV production in Pseudomonas aeruginosa from the lungs of adults with cystic fibrosis. , 2006, Journal of medical microbiology.

[16]  Pradeep K. Singh,et al.  Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Martin,et al.  Innate immunity in the lungs. , 2005, Proceedings of the American Thoracic Society.

[19]  U. Römling,et al.  Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. , 2005, Journal of medical microbiology.

[20]  A. Hauser,et al.  Relative Contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to Virulence in the Lung , 2004, Infection and Immunity.

[21]  C. Mohr,et al.  The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR , 2004, Molecular and General Genetics MGG.

[22]  E. Dennis,et al.  In Vivo Phospholipase Activity of the Pseudomonas aeruginosa Cytotoxin ExoU and Protection of Mammalian Cells with Phospholipase A2 Inhibitors* , 2003, Journal of Biological Chemistry.

[23]  J. Wiener-Kronish,et al.  Single-Nucleotide-Polymorphism Mapping of the Pseudomonas aeruginosa Type III Secretion Toxins for Development of a Diagnostic Multiplex PCR System , 2003, Journal of Clinical Microbiology.

[24]  G. Pier,et al.  Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. , 2003, American journal of respiratory cell and molecular biology.

[25]  K. Jarvi,et al.  Use of In-Biofilm Expression Technology To Identify Genes Involved in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[26]  J. Rello,et al.  Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. , 2002, Critical care medicine.

[27]  H. Sader,et al.  Heterogeneity of Pseudomonas aeruginosa in Brazilian Cystic Fibrosis Patients , 2001, Journal of Clinical Microbiology.

[28]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[29]  J. Carlin,et al.  Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. , 2001, The Journal of pediatrics.

[30]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[31]  J. Croizé,et al.  Pseudomonas aeruginosa Cystic Fibrosis Isolates Induce Rapid, Type III Secretion-Dependent, but ExoU-Independent, Oncosis of Macrophages and Polymorphonuclear Neutrophils , 2000, Infection and Immunity.

[32]  E. Chi,et al.  Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia , 1996, Infection and immunity.

[33]  G. Pier,et al.  Pseudomonas aeruginosa invasion of and multiplication within corneal epithelial cells in vitro , 1995, Infection and immunity.

[34]  D H Persing,et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.

[35]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[36]  R. Baltimore,et al.  Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. , 1989, The American review of respiratory disease.

[37]  N. Baker,et al.  Heterogeneity and reduction in pulmonary clearance of mucoid Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.