Maximizing single connection TCP goodput by trading bandwidth for BER

SUMMARY All other conditions being equal, the end-to-end throughput of a TCP connection depends on the packet loss rate at the IP level. This is an issue when IP runs on a wireless link, where the bit error rate is variable and typically much higher than it i s on fixed links. Especially on ph ysical l inks where the bandwidth d elay product is high, TCP performance is s ignificantly impaired by apparently low values of the bit error rate. Generally speaking, on a wireless link b andwidth can be traded for information quality (error r ate), the simplest method being to change the type or parameters of forward error correction. On this basis, we show a general method of taking advantage of this trade-off in order to maximize the throughput of a TCP connection.

[1]  Christina B. Cox,et al.  Advanced Communications Technology Satellite (ACTS) fade compensation protocol impact on very small-aperture terminal bit error rate performance , 1999, IEEE J. Sel. Areas Commun..

[2]  Sastri L. Kota,et al.  Broadband satellite network performance [Guest Editorial] , 1999, IEEE Commun. Mag..

[3]  John S. Baras,et al.  An architecture for Internet service via broadband satellite networks , 2001, Int. J. Satell. Commun. Netw..

[4]  Branka Vucetic,et al.  An adaptive coding scheme for time-varying channels , 1991, IEEE Trans. Commun..

[5]  Eitan Altman,et al.  Bandwidth tradeoff between TCP and link-level FEC , 2002, Comput. Networks.

[6]  Chadi Barakat,et al.  A stochastic model of TCP/IP with stationary random losses , 2000, TNET.

[7]  Sally Floyd,et al.  Increasing TCP's Initial Window , 1998, RFC.

[8]  Charles L. H. Lee Convolutional Coding: Fundamentals and Applications , 1997 .

[9]  Mario Marchese Performance analysis of the TCP behavior in a geo satellite environment , 2001, Comput. Commun..

[10]  Ian F. Akyildiz,et al.  TCP-Peach: a new congestion control scheme for satellite IP networks , 2001, TNET.

[11]  Sally Floyd,et al.  TCP Selective Acknowledgement Options , 1996 .

[12]  L. J. Deutsch,et al.  Burst statistics of Viterbi decoding , 1981 .

[13]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[14]  Van Jacobson,et al.  TCP Extensions for High Performance , 1992, RFC.

[15]  T. J. Shepard,et al.  TCP/IP performance over satellite links , 1997, IEEE Netw..

[16]  Gabriel Montenegro,et al.  Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations , 2001, RFC.

[17]  Vern Paxson,et al.  TCP Congestion Control , 1999, RFC.

[18]  Luigi Rizzo,et al.  Effective erasure codes for reliable computer communication protocols , 1997, CCRV.

[19]  Velio Tralli,et al.  Wireless TCP performance with link layer FEC/ARQ , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[20]  T. Chahed,et al.  End-to-end reliability in UMTS: TCP over ARQ , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[21]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[22]  Matthew Mathis,et al.  The macroscopic behavior of the TCP congestion avoidance algorithm , 1997, CCRV.

[23]  T. V. Lakshman,et al.  The performance of TCP/IP for networks with high bandwidth-delay products and random loss , 1997, TNET.

[24]  John S. Heidemann,et al.  Ongoing TCP Research Related to Satellites , 2000, RFC.