The von Neumann entropy and information rate for integrable quantum Gibbs ensembles, 2

This paper considers the problem of data compression for dependent quantum systems. It is the second in a series under the same title. As in the previous paper, we are interested in Lempel--Ziv encoding for quantum Gibbs ensembles. Here, we consider the canonical ideal lattice Bose- and Fermi-ensembles. We prove that as in the case of the grand canonical ensemble, the (limiting) von Neumann entropy rate $h$ can be assessed, via the classical Lempel--Ziv universal coding algorithm, from a single eigenvector of the density matrix.

[1]  Y. Rozanov On a Local Limit Theorem for Lattice Distributions , 1957 .

[2]  B. Efron Increasing Properties of Polya Frequency Function , 1965 .

[3]  S. G. Hoggar Chromatic polynomials and logarithmic concavity , 1974 .

[4]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[5]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[6]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .

[7]  A. Connes,et al.  Dynamical entropy ofC* algebras and von Neumann algebras , 1987 .

[8]  Peter Grassberger,et al.  Estimating the information content of symbol sequences and efficient codes , 1989, IEEE Trans. Inf. Theory.

[9]  Aaron D. Wyner,et al.  Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression , 1989, IEEE Trans. Inf. Theory.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  P. Shields Entropy and Prefixes , 1992 .

[12]  Benjamin Weiss,et al.  Entropy and data compression schemes , 1993, IEEE Trans. Inf. Theory.

[13]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[14]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[15]  P. Shields String matching bounds via coding , 1997 .

[16]  D. Petz,et al.  Stationary quantum source coding , 1999, quant-ph/9912103.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[18]  Constantin P. Niculescu A NEW LOOK AT NEWTON'S INEQUALITIES , 2000 .

[19]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[20]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[21]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[22]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[23]  O. Johnson,et al.  The von Neumann entropy and information rate for ideal quantum Gibbs ensembles , 2001, math-ph/0109023.