The von Neumann entropy and information rate for integrable quantum Gibbs ensembles, 2
暂无分享,去创建一个
[1] Y. Rozanov. On a Local Limit Theorem for Lattice Distributions , 1957 .
[2] B. Efron. Increasing Properties of Polya Frequency Function , 1965 .
[3] S. G. Hoggar. Chromatic polynomials and logarithmic concavity , 1974 .
[4] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[5] O. Bratteli. Operator Algebras And Quantum Statistical Mechanics , 1979 .
[6] K. Joag-dev,et al. Negative Association of Random Variables with Applications , 1983 .
[7] A. Connes,et al. Dynamical entropy ofC* algebras and von Neumann algebras , 1987 .
[8] Peter Grassberger,et al. Estimating the information content of symbol sequences and efficient codes , 1989, IEEE Trans. Inf. Theory.
[9] Aaron D. Wyner,et al. Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression , 1989, IEEE Trans. Inf. Theory.
[10] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[11] P. Shields. Entropy and Prefixes , 1992 .
[12] Benjamin Weiss,et al. Entropy and data compression schemes , 1993, IEEE Trans. Inf. Theory.
[13] V. V. Petrov. Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .
[14] P. Shields. The Ergodic Theory of Discrete Sample Paths , 1996 .
[15] P. Shields. String matching bounds via coding , 1997 .
[16] D. Petz,et al. Stationary quantum source coding , 1999, quant-ph/9912103.
[17] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[18] Constantin P. Niculescu. A NEW LOOK AT NEWTON'S INEQUALITIES , 2000 .
[19] Michael D. Westmoreland,et al. Relative entropy in quantum information theory , 2000, quant-ph/0004045.
[20] C. Monroe,et al. Experimental entanglement of four particles , 2000, Nature.
[21] B. Julsgaard,et al. Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.
[22] I. Chuang,et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.
[23] O. Johnson,et al. The von Neumann entropy and information rate for ideal quantum Gibbs ensembles , 2001, math-ph/0109023.