Styrenic block copolymers for biomaterial and drug delivery applications.

[1]  D. T. Padavan,et al.  Polyisobutylene-based biomaterials , 2004 .

[2]  Gregg W Stone,et al.  One-Year Clinical Results With the Slow-Release, Polymer-Based, Paclitaxel-Eluting TAXUS Stent: The TAXUS-IV Trial , 2004, Circulation.

[3]  A. Colombo,et al.  Polymer-Based Paclitaxel-Eluting Coronary Stents , 2004, Herz.

[4]  G. Stone,et al.  A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. , 2004, The New England journal of medicine.

[5]  V. Bhatia,et al.  Drug-eluting stents: new era and new concerns , 2004, Postgraduate Medical Journal.

[6]  S. Silber Paclitaxel-eluting stents: are they all equal? An analysis of six randomized controlled trials in de novo lesions of 3,319 patients. , 2003, Journal of interventional cardiology.

[7]  G. Reid,et al.  Atomic force microscopic and encrustation studies of novel prospective polyisobutylene‐based thermoplastic elastomeric biomaterials , 2003 .

[8]  S. Silber,et al.  Randomized Study to Assess the Effectiveness of Slow- and Moderate-Release Polymer-Based Paclitaxel-Eluting Stents for Coronary Artery Lesions , 2003, Circulation.

[9]  P. Serruys,et al.  New frontiers in cardiology: drug-eluting stents: Part II. , 2003, Circulation.

[10]  Patrick W Serruys,et al.  New frontiers in cardiology: drug-eluting stents: Part I. , 2003, Circulation.

[11]  Muzaffer Degertekin,et al.  TAXUS III Trial: In-Stent Restenosis Treated With Stent-Based Delivery of Paclitaxel Incorporated in a Slow-Release Polymer Formulation , 2003, Circulation.

[12]  Mary E. Russell,et al.  TAXUS I: Six- and Twelve-Month Results From a Randomized, Double-Blind Trial on a Slow-Release Paclitaxel-Eluting Stent for De Novo Coronary Lesions , 2003, Circulation.

[13]  J. Puskas,et al.  Investigation of the rheological and mechanical properties of a polystyrene-polyisobutylene-polystyrene triblock copolymer and its blends with polystyrene , 2003 .

[14]  M. Eisenberg,et al.  Coated stents for the prevention of restenosis: Part I. , 2002, Circulation.

[15]  C. Morís Practical interventional cardiology (2nd ed.) , 2002 .

[16]  J. Puskas,et al.  Study of the surface morphology of polyisobutylene-based block copolymers by Atomic Force Microscopy , 2002 .

[17]  S. Förster,et al.  From self-organizing polymers to nanohybrid and biomaterials. , 2002, Angewandte Chemie.

[18]  Abraham J. Domb,et al.  Pharmaceutical Polymeric Controlled Drug Delivery Systems , 2002 .

[19]  N. Kumar,et al.  Biodegradable block copolymers. , 2001, Advanced drug delivery reviews.

[20]  W. Mark Saltzman,et al.  Drug Delivery: Engineering Principles for Drug Therapy , 2001 .

[21]  Donald L. Wise,et al.  Handbook of Pharmaceutical Controlled Release Technology , 2000 .

[22]  J. Puskas,et al.  Living carbocationic polymerization of resonance-stabilized monomers , 2000 .

[23]  Matthew Libera,et al.  Kinetic Constraints on the Development of Surface Microstructure in SBS Thin Films , 1998 .

[24]  A. Gershlick,et al.  Antithrombotic potential of polymer-coated stents eluting platelet glycoprotein IIb/IIIa receptor antibody. , 1996, Circulation.

[25]  David R. Ramsdale,et al.  Practical Interventional Cardiology , 1996 .

[26]  E. Thomas,et al.  Determination of surface morphology of diblock copolymers of styrene and butadiene by atomic force microscopy , 1992 .

[27]  J. Kennedy,et al.  Electron-Pair Donors in Carbocationic Polymerization. III. Carbocation Stabilization by External Electron-Pair Donors in Isobutylene Polymerization , 1989 .

[28]  J. Kost Controlled drug delivery systems , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.

[29]  T. Okano,et al.  Adhesion behavior of rat lymphocyte subpopulations (B cell and T cell) on the surface of polystyrene/polypeptide graft copolymer. , 1986, Journal of biomedical materials research.

[30]  M. Helmus,et al.  Plasma Interaction on Block Copolymers as Determined by Platelet Adhesion , 1982 .

[31]  L. Vroman,et al.  Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. , 1980, Blood.

[32]  M. Sefton,et al.  Heparinized styrene-butadiene-styrene elastomers. , 1979, Journal of biomedical materials research.

[33]  A. Bantjes Clotting Phenomena at the Blood‐Polymer Interface and Development of Blood Compatible Polymeric Surfaces , 1978 .

[34]  Picha Gj,et al.  Effect of polyurethane morphology on blood coagulation. , 1978 .

[35]  T. Nakashima,et al.  Thromboresistance of graft-type copolymers with hydrophilic-hydrophobic microphase-separated structure. , 1977, Journal of biomedical materials research.

[36]  R. E. Robertson,et al.  The Physics of Glassy Polymers , 1973 .

[37]  C. Price,et al.  The morphology of (styrene)x (butadiene)y (styrene)x block copolymers , 1971 .