Tuning the far-field superlens: from UV to visible.

A far-field optical superlens, which is able to form sub-diffraction- limited images in the far field at UV wavelength, was recently demonstrated. In current work we present two methods to tune the working wavelength from UV to visible by tuning either the permittivity of the surrounding medium or that of the metal. A practical design is provided for each method. The tunable far-field superlens enables possible applications of the far-field superlens in sub-diffraction-limited imaging and sensing over a wide range of wavelength.

[1]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[2]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[3]  V. Podolskiy,et al.  Near-sighted superlens. , 2004, Optics letters.

[4]  Vladimir M. Shalaev,et al.  Superlens based on metal-dielectric composites , 2005 .

[5]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[6]  Richard J. Blaikie,et al.  Simulation study of ‘perfect lenses’ for near-field optical nanolithography , 2002 .

[7]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[8]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[9]  Thomas K. Gaylord,et al.  Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach , 1995 .

[10]  Viktor Podolskiy,et al.  Plasmon modes and negative refraction in metal nanowire composites. , 2003, Optics express.

[11]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[12]  Yi Xiong,et al.  Realization of optical superlens imaging below the diffraction limit , 2005 .

[13]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[14]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[15]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[16]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[17]  M. Rosenbluth,et al.  Limitations on subdiffraction imaging with a negative refractive index slab , 2002, cond-mat/0206568.

[18]  Jennifer M. Steele,et al.  Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit , 2006 .

[19]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.