Laguerre-type Bell polynomials

We develop an extension of the classical Bell polynomials introducing the Laguerre-type version of this well-known mathematical tool. The Laguerre-type Bell polynomials are useful in order to compute the nth Laguerre-type derivatives of a composite function. Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit relationships between Bessel functions and generalized hypergeometric functions.

[1]  Pierpaolo Natalini,et al.  Multidimensional bell polynomials of higher order , 2005 .

[2]  Giuseppe Dattoli,et al.  Laguerre-Type Exponentials, and the Relevant 𝐿-Circular and 𝐿-Hyperbolic Functions , 2003 .

[3]  Paolo Ricci,et al.  Bell polynomials and differential equations of Freud-type polynomials , 2002 .

[4]  Paolo Emilio Ricci,et al.  Symbolic Computation of Newton Sum Rules for the Zeros of Polynomial Eigenfunctions of Linear Differential Operators , 2001, Numerical Algorithms.

[5]  Thomas J. Lardner Relations Between ${}_0 F_3 $ and Bessel Functions , 1969 .

[6]  Silvia Noschese,et al.  Differentiation of Multivariable Composite Functions and Bell Polynomials , 2003 .

[7]  L. Carlitz Some Reduction Formulas for Generalized Hypergeometric Functions , 1970 .

[8]  Francesco Faà di Bruno Théorie des formes binaires , 1876 .

[9]  Pierpaolo Natalini,et al.  An extension of the bell polynomials , 2004 .

[10]  Joseph Alfred Serret Cours d'algèbre supérieure ... ; tome second , 1885 .

[11]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[12]  X. Ren,et al.  Mathematics , 1935, Nature.

[13]  Journal de Mathématiques pures et appliquées , 1889 .

[14]  Steven Roman The Umbral Calculus , 1984 .

[15]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[16]  Steven Roman The Formula of FAA Di Bruno , 1980 .

[17]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .