A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing

[1]  Jeremy Stinson,et al.  Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia , 2017, The Journal of cell biology.

[2]  M. Hattori,et al.  A Histone Methyltransferase ESET Is Critical for T Cell Development , 2016, The Journal of Immunology.

[3]  J. Goodier Restricting retrotransposons: a review , 2016, Mobile DNA.

[4]  Hiroshi Kimura,et al.  Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes. , 2016, Blood.

[5]  Mohammad M. Karimi,et al.  Activation of Endogenous Retroviruses in Dnmt1(-/-) ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA. , 2016, Cell stem cell.

[6]  G. Schotta,et al.  Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells , 2016, Development.

[7]  G. Vartholomatos,et al.  Genomic analysis of mouse VL30 retrotransposons , 2016, Mobile DNA.

[8]  Helen M. Rowe,et al.  Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. , 2016, Developmental cell.

[9]  George Q. Daley,et al.  Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells , 2015, Cell.

[10]  Katherine E. Kyle,et al.  The histone methyltransferase SETDB1 represses endogenous and exogenous retroviruses in B lymphocytes , 2015, Proceedings of the National Academy of Sciences.

[11]  E. Füchtbauer,et al.  The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses , 2015, Genes & development.

[12]  D. Trono,et al.  TRIM28 Represses Transcription of Endogenous Retroviruses in Neural Progenitor Cells , 2014, Cell reports.

[13]  Mohammad M. Karimi,et al.  Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells , 2014, Genes & development.

[14]  J. Martens,et al.  Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. , 2014, Molecular cell.

[15]  Aviv Regev,et al.  Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing , 2014, Nature Biotechnology.

[16]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[17]  S. Goff,et al.  EBP1, a Novel Host Factor Involved in Primer Binding Site-Dependent Restriction of Moloney Murine Leukemia Virus in Embryonic Cells , 2013, Journal of Virology.

[18]  S. Goff,et al.  Proviral silencing in embryonic cells is regulated by Yin Yang 1. , 2013, Cell reports.

[19]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[20]  Yutaka Suzuki,et al.  High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice , 2013, Genome research.

[21]  Wendy A Bickmore,et al.  Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes , 2013, Genome Biology.

[22]  R. Losson,et al.  Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA , 2013, Nature Structural &Molecular Biology.

[23]  D. Trono,et al.  De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET , 2013, Development.

[24]  W. Reik,et al.  The Dynamics of Genome-wide DNA Methylation Reprogramming in Mouse Primordial Germ Cells , 2012, Molecular cell.

[25]  D. Trono,et al.  The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. , 2012, Cell reports.

[26]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[27]  Hiroshi Kimura,et al.  Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. , 2012, Molecular cell.

[28]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[29]  James H. Thomas,et al.  Coevolution of retroelements and tandem zinc finger genes. , 2011, Genome research.

[30]  T. Ohtsuka,et al.  Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development , 2011, Neuroscience Research.

[31]  Steven J. M. Jones,et al.  DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. , 2011, Cell stem cell.

[32]  Bing Ren,et al.  Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. , 2011, Genes & development.

[33]  Helen M. Rowe,et al.  Dynamic control of endogenous retroviruses during development. , 2011, Virology.

[34]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[35]  G. Fan,et al.  Repression of Retrotransposal Elements in Mouse Embryonic Stem Cells Is Primarily Mediated by a DNA Methylation-independent Mechanism* , 2010, The Journal of Biological Chemistry.

[36]  W. Miller,et al.  Epigenetic Regulation of a Murine Retrotransposon by a Dual Histone Modification Mark , 2010, PLoS genetics.

[37]  H. Kimura,et al.  Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET , 2010, Nature.

[38]  M. Jaritz,et al.  Polycomb complexes act redundantly to repress genomic repeats and genes. , 2010, Genes & development.

[39]  Helen M. Rowe,et al.  KAP1 controls endogenous retroviruses in embryonic stem cells , 2010, Nature.

[40]  S. Goff,et al.  Embryonic stem cells use ZFP809 to silence retroviral DNAs , 2009, Nature.

[41]  S. Goff,et al.  Host restriction factors blocking retroviral replication. , 2008, Annual review of genetics.

[42]  M. Wiznerowicz,et al.  The Krüppel-associated Box Repressor Domain Can Trigger de Novo Promoter Methylation during Mouse Early Embryogenesis* , 2007, Journal of Biological Chemistry.

[43]  S. Goff,et al.  TRIM28 Mediates Primer Binding Site-Targeted Silencing of Murine Leukemia Virus in Embryonic Cells , 2007, Cell.

[44]  J. Ellis,et al.  Retrovirus Silencing by an Epigenetic TRIM , 2007, Cell.

[45]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[46]  D. C. Schultz,et al.  The KAP1 Corepressor Functions To Coordinate the Assembly of De Novo HP1-Demarcated Microenvironments of Heterochromatin Required for KRAB Zinc Finger Protein-Mediated Transcriptional Repression , 2006, Molecular and Cellular Biology.

[47]  T. Sugiyama,et al.  Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome , 2005, Nature Genetics.

[48]  Martin Radolf,et al.  The profile of repeat‐associated histone lysine methylation states in the mouse epigenome , 2005, The EMBO journal.

[49]  J. Sebolt-Leopold,et al.  Targeting the mitogen-activated protein kinase cascade to treat cancer , 2004, Nature Reviews Cancer.

[50]  T. Bestor,et al.  Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L , 2004, Nature.

[51]  Michael Black,et al.  Role of transposable elements in heterochromatin and epigenetic control , 2004, Nature.

[52]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[53]  C. Walsh,et al.  Transcription of IAP endogenous retroviruses is constrained by cytosine methylation , 1998, Nature Genetics.

[54]  T. Islam,et al.  Nuclear orphan receptor-binding retinoic acid response elements in keratinocytes. , 1994, Biochemical and biophysical research communications.

[55]  S. Bohm,et al.  Inducible and cell type-specific expression of VL30 U3 subgroups correlate with their enhancer design , 1994, Journal of virology.

[56]  A. Nordheim,et al.  Activation of ternary complex factor Elk‐1 by MAP kinases. , 1993, The EMBO journal.

[57]  Michael C. Ostrowski,et al.  An enhancer element responsive to ras and fms signaling pathways is composed of two distinct nuclear factor binding sites. , 1992, Molecular endocrinology.

[58]  Michael C. Ostrowski,et al.  ras oncogene activation of a VL30 transcriptional element is linked to transformation. , 1990, Molecular and cellular biology.

[59]  Robert C. Wolpert,et al.  A Review of the , 1985 .