van der Waals interactions are critical in Car–Parrinello molecular dynamics simulations of porphyrin–fullerene dyads

The interplay between electrostatic and van der Waals (vdW) interactions in porphyrin‐C60 dyads is still under debate despite its importance in influencing the structural characteristics of such complexes considered for various applications in molecular photovoltaics. In this article, we sample the conformational space of a porphyrin‐C60 dyad using Car–Parrinello molecular dynamics simulations with and without empirical vdW corrections. Long‐range vdW interactions, which are poorly described by the commonly used density functional theory functionals, prove to be essential for a proper dynamics of the dyad moieties. Inclusion of vdW corrections brings porphyrin and C60 close together in an orientation that is in agreement with experimental observations. The structural differences arising from the vdW corrections are shown to be significant for several properties and potentially less important for others. Additionally, our Mulliken population analysis reveals that contrary to the common belief, porphyrin is not the primary electron donating moiety for C60. In the considered dyad, fullerene's affinity for electrons is primarily satisfied by charge transfer from the amide group of the linker. However, we show that in the absence of another suitable bound donor, C60 can withdraw electrons from porphyrin if it is sufficiently close. © 2015 Wiley Periodicals, Inc.

[1]  F. Tham,et al.  Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts. , 2002, Journal of the American Chemical Society.

[2]  Takuzo Aida,et al.  A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C60 , 1999 .

[3]  Stephen Maldonado,et al.  Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding. , 2005, Chemical communications.

[4]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[5]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[6]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Kirsi Tappura,et al.  Computational analysis of the conformations of a doubly linked porphyrin–fullerene dyad , 2006 .

[8]  Helge Lemmetyinen,et al.  Near infra-red emission of charge-transfer complexes of porphyrin–fullerene films , 2000 .

[9]  S. Samal,et al.  An overview of fullerene chemistry , 1997 .

[10]  F. Diederich,et al.  Covalent Fullerene Chemistry , 1996, Science.

[11]  Oana Cramariuc,et al.  Ab initio description of photoabsorption and electron transfer in a doubly‐linked porphyrin‐fullerene dyad , 2009, J. Comput. Chem..

[12]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[13]  N V Tkachenko,et al.  Charge-transfer emission of compact porphyrin-fullerene dyad analyzed by Marcus theory of electron-transfer. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  Helge Lemmetyinen,et al.  Effect of halide binding on intramolecular exciplex of double-linked zinc porphyrin-fullerene dyad , 2012 .

[15]  Sergey A. Maksimenko,et al.  Study of the polarizability of fullerenes with a monopole-dipole interaction model , 2007 .

[16]  Seiji Taniguchi,et al.  Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C60 Dyads , 1996 .

[17]  Helge Lemmetyinen,et al.  TD-DFT description of photoabsorption and electron transfer in a covalently bonded porphyrin-fullerene dyad. , 2006, The journal of physical chemistry. A.

[18]  E. Durantini,et al.  Synthesis and Spectroscopic Properties of a Covalently Linked Porphyrin–Fullerene C60 Dyad , 2006 .

[19]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[20]  Helge Lemmetyinen,et al.  Efficient synthesis of highly soluble doubly-bridged porphyrin-fullerene dyad , 2003 .

[21]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[22]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[23]  Nicola Armaroli,et al.  Charge-transfer interactions in face-to-face porphyrin-fullerene systems: solvent-dependent luminescence in the infrared spectral region , 2000, Chemistry.

[24]  Zhenyang Lin,et al.  Supramolecular interactions between fullerenes and porphyrins. , 2003, Journal of the American Chemical Society.

[25]  Michiel Sprik,et al.  A density‐functional study of the intermolecular interactions of benzene , 1996 .

[26]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[27]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[28]  Helge Lemmetyinen,et al.  Tuning the ground-state and excited-state interchromophore interactions in porphyrin-fullerene π-stacks , 2004 .

[29]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[30]  Sandip K. Nayak,et al.  Supramolecular fullerene/porphyrin charge transfer interaction studied by absorption spectrophotometric method , 2009 .

[31]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[32]  Helge Lemmetyinen,et al.  DFT and TDDFT study related to electron transfer in nonbonded porphine...C60 complexes. , 2006, The journal of physical chemistry. A.

[33]  J. M. Gomez Llorente,et al.  Electronic structure and polarizabilities of icosahedral fullerenes: A Pariser–Parr–Pople approach , 2001 .

[34]  Lyubov G. Bulusheva,et al.  Electronic structure of the complexes of fullerene C60 with polyaromatic molecules , 2003 .

[35]  Allen G. Oliver,et al.  SELECTIVE SUPRAMOLECULAR PORPHYRIN/FULLERENE INTERACTIONS , 1999 .

[36]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[37]  Francis D'Souza,et al.  Electronic Interactions and Photoinduced Electron Transfer in Covalently Linked Porphyrin−C60(pyridine) Diads and Supramolecular Triads Formed by Self-Assembling the Diads and Zinc Porphyrin , 2002 .

[38]  Kristian Berland,et al.  Analysis of van der Waals density functional components: Binding and corrugation of benzene and C-60 on boron nitride and graphene , 2013 .

[39]  Kirsi Tappura,et al.  Molecular simulations for the conformational assessment of a porphyrin-fullerene dyad in different environments. , 2005, Physical chemistry chemical physics : PCCP.

[40]  Francis D'Souza,et al.  Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications. , 2009, Chemical communications.

[41]  Helge Lemmetyinen,et al.  Slow Charge Recombination and Enhanced Photoelectrochemical Properties of Diazaporphyrin-Fullerene Linked Dyad , 2014 .

[42]  Robert W. Williams,et al.  van der Waals corrections to density functional theory calculations: Methane, ethane, ethylene, benzene, formaldehyde, ammonia, water, PBE, and CPMD , 2006 .

[43]  C. Tanford Macromolecules , 1994, Nature.

[44]  Takuzo Aida,et al.  Molecular Design of a Novel Dendrimer Porphyrin for Supramolecular Fullerene/Dendrimer Hybridization , 2000 .

[45]  Stefan Grimme,et al.  Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  W. Scheidt,et al.  Recent advances in the stereochemistry of metallotetrapyrroles , 1987 .

[47]  Oana Cramariuc,et al.  Molecular dipole effects on tuning electron transfer in a porphine–quinone complex: a DFT and TDDFT study , 2013, Journal of Molecular Modeling.

[48]  Martin Head-Gordon,et al.  A fast correlated electronic structure method for computing interaction energies of large van der Waals complexes applied to the fullerene-porphyrin dimer. , 2006, Physical chemistry chemical physics : PCCP.

[49]  Sumanta Bhattacharya,et al.  π-electronic charge-transfer interactions in supramolecular complex formation between fullerenes and 5,10,15,20-tetrahexylporphyrin , 2005 .

[50]  Christopher A. Reed,et al.  Porphyrin-fullerene host-guest chemistry , 2000 .

[51]  E. I. Yudanova,et al.  Donor–acceptor complexes of fullerene C60 with organic and organometallic donors , 2000 .

[52]  Stephen R. Wilson,et al.  Molecular modelling of fullerene–porphyrin dyads , 2002 .

[53]  Jongcheol Seo,et al.  Noncovalent binding between fullerenes and protonated porphyrins in the gas phase. , 2010, The journal of physical chemistry. A.

[54]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .