Stochastic modelling of transverse wave instability in a liquid-propellant rocket engine

Abstract The combustion stability of a liquid-propellant rocket engine experiencing a random, finite perturbation from steady-state conditions is examined. The probability is estimated for a nonlinear resonant limit-cycle oscillation to be triggered by a random disturbance. Transverse pressure waves are considered by using a previously published two-dimensional nonlinear pressure wave equation coupled with Euler equations governing the velocity components. The cylindrical combustion chamber is a complex system containing multiple co-axial methane–oxygen injectors; each co-axial jet is analysed for mixing and burning on its own local grid scheme, with the energy release rate coupled to the wave oscillation on the more global grid. Two types of stochastic forcing for the random disturbance are explored: a travelling Gaussian pressure pulse and an oscillating pressure dipole source. The random variables describing the pulse are magnitude, location, duration and orientation of the disturbances. The polynomial chaos expansion (PCE) method is used to determine the long-time behaviour and infer the asymptote of the solution to the governing partial differential equations. Depending on the random disturbance, the asymptote could be the steady-state solution or a limit-cycle oscillation, e.g. a first tangential travelling wave mode. The asymptotic outcome is cast as a stochastic variable which is determined as a function of input random variables. The accuracy of the PCE application is compared with a Monte Carlo calculation and is shown to be significantly less costly for similar accuracy.

[1]  High frequency combustion instability in rockets with distributed combustion , 1953 .

[2]  David T. Harrje,et al.  Liquid Propellant Rocket Combustion Instability. NASA SP-194 , 1972 .

[3]  W. Strahle Unsteady reacting boundary layer on a vaporizing flat plate , 1965 .

[4]  Velocity effects in transverse mode liquid propellant rocket combustion instability , 1964 .

[5]  F. Culick,et al.  On the Existence and Stability of Limit Cycles forLongitudinal Acoustic Modes in a Combustion Chamber , 1986 .

[6]  William A. Sirignano,et al.  Oscillatory vaporization of fuel droplets in an unstable combustor , 1989 .

[7]  Joseph C. Oefelein,et al.  MIXING AND COMBUSTION OF CRYOGENIC OXYGEN-HYDROGEN SHEAR-COAXIAL JET FLAMES AT SUPERCRITICAL PRESSURE , 2006 .

[8]  William A. Sirignano,et al.  Numerical Study of the Transient Vaporization of an Oxygen Droplet at Sub- and Super-Critical Conditions , 1993 .

[9]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[10]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[11]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[12]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[13]  Andrzej Służalec,et al.  Random heat flow with phase change , 2000 .

[14]  J. M. Ottino,et al.  Engineering complex systems , 2004, Nature.

[15]  Paul Kuentzmann,et al.  Unsteady Motions in Combustion Chambers for Propulsion Systems , 2006 .

[16]  B. Zinn,et al.  Nonlinear combustion instability in liquid-propellant rocket engines , 1971 .

[17]  William A. Sirignano,et al.  Nonlinear Longitudinal Instability in Rocket Motors with Concentrated Combustion , 1969 .

[18]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[19]  Joseph C. Oefelein,et al.  Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines , 1998 .

[20]  Guang Lin,et al.  Predicting shock dynamics in the presence of uncertainties , 2006, J. Comput. Phys..

[21]  F. Culick Some recent results for nonlinear acoustics in combustion chambers , 1994 .

[22]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[23]  A. Chorin Gaussian fields and random flow , 1974, Journal of Fluid Mechanics.

[24]  Jefferson W. Tester,et al.  Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water , 1998 .

[25]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[26]  V. Yang,et al.  Fundamental Mechanisms of Combustion Instabilities: Liquid-Propellant Droplet Vaporization: A Rate-Controlling Process for Combustion Instability , 1995 .

[27]  Gary A. Flandro,et al.  Nonlinear Rocket Motor Stability Prediction: Limit Amplitude, Triggering, and Mean Pressure Shift , 2007 .

[28]  W. Sirignano,et al.  One-dimensional analysis of liquid-fueled combustion instability , 1991 .

[29]  W. Meecham,et al.  Use of the Wiener—Hermite expansion for nearly normal turbulence , 1968, Journal of Fluid Mechanics.

[30]  W. Strahle Periodic solutions to a convective droplet burning problem: The stagnation point , 1965 .

[31]  M. Oschwald,et al.  Atomization and Flames in LOX/H2- and LOx/CH4- Spray Combustion , 2007 .

[32]  Vigor Yang,et al.  Comprehensive review of liquid-propellant combustion instabilities in F-1 engines , 1993 .

[33]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[34]  S. Menon,et al.  Large-Eddy Simulation of Flame-Turbulence Interactions in a Shear Coaxial Injector , 2010 .

[35]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[36]  W. A. Sirignano,et al.  Effect of the transverse velocity component on the nonlinear behavior of short nozzles. , 1966 .

[37]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[38]  V. Yang,et al.  Triggering of Longitudinal Pressure Oscillations in Combustion Chambers. I: Nonlinear Gasdynamics , 1990 .

[39]  S. Menon,et al.  Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine , 2009 .

[40]  W. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays , 1999 .

[41]  Pavel P. Popov,et al.  Two-Dimensional Model for Liquid-Rocket Transverse Combustion Instability , 2013 .

[42]  William A. Sirignano,et al.  Fluid Dynamics and Transport of Droplets and Sprays: Index , 2010 .

[43]  D. T. Harrje Liquid propellant rocket combustion instability , 1972 .

[44]  I. Tezaur,et al.  Uncertainty Quantification , 2011, Encyclopedia of Parallel Computing.

[45]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[46]  Gary A. Flandro,et al.  Nonlinear Liquid Rocket Combustion Instability Behavior using UCDS™ Process , 2010 .

[47]  P. Beran,et al.  Uncertainty quantification of limit-cycle oscillations , 2006, J. Comput. Phys..

[48]  Vigor Yang,et al.  Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen environments , 1994 .

[49]  William A. Sirignano,et al.  BEHAVIOR OF SUPERCRITICAL NOZZLES UNDER THREE-DIMENSIONAL OSCILLATORY CONDITIONS , 1967 .

[50]  S. Menon,et al.  Large Eddy Simulation of Flame-Turbulence Interactions in a LOX-CH4 Shear Coaxial Injector , 2012 .

[51]  Jean-Pierre Delplanque,et al.  Transcritical Liquid Oxygen Droplet Vaporization; Effect on Rocket Combustion Instability , 1996 .

[52]  Ningning Liu,et al.  Stochastic finite element method for random temperature in concrete structures , 2001 .

[53]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[54]  Anthony Ruiz,et al.  Large-Eddy Simulation of Supercritical-Pressure Round Jets , 2010 .

[55]  G. H. Canavan,et al.  Relationship between a Wiener–Hermite expansion and an energy cascade , 1970, Journal of Fluid Mechanics.

[56]  Sébastien Candel,et al.  Large-Eddy Simulation of oxygen/methane flames under transcritical conditions , 2011 .

[57]  Jeroen A. S. Witteveen,et al.  Probabilistic collocation for period-1 limit cycle oscillations , 2008 .

[58]  J. Pereira,et al.  Calculation of premixed combustion within inert porous media with model parametric uncertainty quantification , 2011 .

[59]  Joseph C. Oefelein,et al.  An Approach to Improved Credibility of CFD Simulations for Rocket Injector Design , 2007 .

[60]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[61]  Michał Kleiber,et al.  Stochastic finite element modelling in linear transient heat transfer , 1997 .

[62]  C. H. Chiang,et al.  Oscillatory fuel droplet vaporization - Driving mechanism for combustion instability , 1996 .

[63]  William A. Sirignano,et al.  A shock wave model of unstable rocket combustors , 1964 .

[64]  L. Crocco,et al.  Nonlinear Periodic Oscillations in Rocket Motors with Distributed Combustion , 1969 .

[65]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[66]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[67]  Vigor Yang,et al.  Validation of High-Fidelity CFD Simulations for Rocket Injector Design , 2008 .

[68]  Ben T. Zinn A theoretical study of nonlinear combustion instability in liquid-propellant rocket engines. , 1968 .