A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN.

[1]  Li Li Compressed Sensing in Wireless Sensor Networks , 2012 .

[2]  Cong Ling,et al.  Wyner-Ziv Coding Based on Multidimensional Nested Lattices , 2012, IEEE Transactions on Communications.

[3]  Varun Setia,et al.  Coding of DWT Coefficients using Run-length Coding and Huffman Coding for the Purpose of Color Image Compression , 2012 .

[4]  Jie Yang Multiple Description Wavelet-Based Image Coding Using Iterated Function System , 2013 .

[5]  Najeem Lawal,et al.  Modeling and Verification of a Heterogeneous Sky Surveillance Visual Sensor Network , 2013, Int. J. Distributed Sens. Networks.

[6]  Jinping Hao,et al.  Sequential Compressive Sensing in Wireless Sensor Networks , 2012, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

[7]  Lu Gan Block Compressed Sensing of Natural Images , 2007, 2007 15th International Conference on Digital Signal Processing.

[8]  C. Karakus,et al.  Analysis of Energy Efficiency of Compressive Sensing in Wireless Sensor Networks , 2013, IEEE Sensors Journal.

[9]  Francis Lepage,et al.  Tiny block-size coding for energy-efficient image compression and communication in wireless camera sensor networks , 2011, Signal Process. Image Commun..

[10]  Sheng-Tzong Cheng,et al.  Hierarchical Distributed Source Coding Scheme and Optimal Transmission Scheduling for Wireless Sensor Networks , 2013, Wirel. Pers. Commun..

[11]  Tulsi Pawan Fowdur,et al.  Robust JPEG image transmission using unequal error protection and code combining , 2008, Int. J. Commun. Syst..

[12]  Hui Zhang,et al.  Real-time implementation of a new low-memory SPIHT image coding algorithm using DSP chip , 2002, IEEE Trans. Image Process..

[13]  Prerana Karnik,et al.  A survey on Content based Image Retrieval using Vector Quantization , 2013 .

[14]  Jean-Pierre Cances,et al.  Wireless sensor networks with joint network–channel code optimization , 2013, Int. J. Commun. Syst..

[15]  Ian J. Wassell,et al.  Energy efficient signal acquisition via compressive sensing in wireless sensor networks , 2011, International Symposium on Wireless and Pervasive Computing.

[16]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[17]  Enrico Magli,et al.  Distributed Arithmetic Coding for the Slepian–Wolf Problem , 2007, IEEE Transactions on Signal Processing.

[18]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[19]  K M Jeevan,et al.  Comparative Study of DCT based Image Compression on Hexagonal and Conventional Square Pixel Images , 2012 .

[20]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[21]  Dayanand Ambawade,et al.  Multipath based Energy Efficient (MEE) Routing Protocol for WMSNs , 2013 .

[22]  Scott Hauck,et al.  SPIHT image compression on FPGAs , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[23]  Naveen,et al.  Image Compression Using DCT and Wavelet Transformations , 2011 .

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  Pier Luigi Dragotti,et al.  Symmetric and asymmetric Slepian-Wolf codes with systematic and nonsystematic linear codes , 2005, IEEE Communications Letters.

[26]  James E. Fowler,et al.  Block Compressed Sensing of Images Using Directional Transforms , 2010, 2010 Data Compression Conference.

[27]  Y. Fisher Fractal image compression: theory and application , 1995 .

[28]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[29]  Syed Mahfuzul Aziz,et al.  An energy efficient image compression scheme for Wireless Sensor Networks , 2013, 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[30]  Samira Ebrahimi Kahou,et al.  Image compression: Comparative analysis of basic algorithms , 2010, 2010 East-West Design & Test Symposium (EWDTS).

[31]  Kms Soyjaudah,et al.  Robust JPEG image transmission using unequal error protection and code combining , 2008 .

[32]  Jun Zheng,et al.  A Slepian-Wolf coding based energy-efficient clustering algorithm for data aggregation in wireless sensor networks , 2012, 2012 IEEE International Conference on Communications (ICC).

[33]  Oleg Starostenko,et al.  Lossy Image Compression Using Discrete Wavelet Transform and Thresholding Techniques , 2013 .

[34]  Xuanjing Shen,et al.  Distributed Image Compression and Transmission Scheme in Wireless Multimedia Sensor Networks , 2014 .

[35]  Wen Hu,et al.  Energy efficient information collection in wireless sensor networks using adaptive compressive sensing , 2009, 2009 IEEE 34th Conference on Local Computer Networks.

[36]  Sanjay N. Talbar,et al.  Still Image Compression using Embedded Zerotree Wavelet Encoding , 2010 .

[37]  Sanjay Kumar Madria,et al.  On compressing data in wireless sensor networks for energy efficiency and real time delivery , 2012, Distributed and Parallel Databases.

[38]  Pawel Kulakowski,et al.  Performance study of wireless sensor and actuator networks in forest fire scenarios , 2013, Int. J. Commun. Syst..

[39]  Vrinda Gupta,et al.  Data Compression using Distributed Source Coding in Wireless Sensor Network , .

[40]  Francesco Marcelloni,et al.  Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization , 2010, Inf. Sci..

[41]  Wei Wang,et al.  Recent Advances in Energy-Efficient Sensor Networks , 2013, Int. J. Distributed Sens. Networks.

[42]  Wenjun Zeng,et al.  Power-efficient rate allocation for Slepian-Wolf coding over wireless sensor networks , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[43]  Kannan Ramchandran,et al.  A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[44]  Hyun Sung Chang,et al.  Learning Compressed Sensing , 2007 .

[45]  Jung-Shian Li,et al.  JPEG forensics scheme for signature embedding and packet-level detection , 2014, Int. J. Commun. Syst..

[46]  Carlo Fischione,et al.  Reliability and Efficiency Analysis of Distributed Source Coding in Wireless Sensor Networks , 2009, 2009 IEEE International Conference on Communications.

[47]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[48]  Nicolas Gehrig,et al.  Distributed Source Coding of Multi-View Images , 2007 .

[49]  V. K. Govindan,et al.  Arithmetic Coding- A Reliable Implementation , 2013 .

[50]  Jun Chen,et al.  On the Linear Codebook-Level Duality Between Slepian–Wolf Coding and Channel Coding , 2009, IEEE Transactions on Information Theory.

[51]  Xu Chen,et al.  Joint reconstruction of compressed multi-view images , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[52]  Kannan Ramchandran,et al.  Distributed code constructions for the entire Slepian-Wolf rate region for arbitrarily correlated sources , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[53]  Bernd Girod,et al.  Transform-domain Wyner-Ziv codec for video , 2004, IS&T/SPIE Electronic Imaging.

[54]  Ahmed Khoumsi,et al.  A Survey of Image Compression Algorithms for Visual Sensor Networks , 2012 .

[55]  Michael B. Wakin,et al.  A manifold lifting algorithm for multi-view compressive imaging , 2009, 2009 Picture Coding Symposium.

[56]  Wendi B. Heinzelman,et al.  A Survey of Visual Sensor Networks , 2009, Adv. Multim..

[57]  Rui Zhang,et al.  Wyner-Ziv coding of motion video , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[58]  Songtao Ye,et al.  Energy-aware interleaving for robust image transmission over visual sensor networks , 2011, IET Wirel. Sens. Syst..

[59]  Kaamran Raahemifar,et al.  Concepts for Designing Low-Power Wireless Sensor Networks with Compressed Sensing Theory , 2011 .

[60]  Cheng Li,et al.  Distributed Data Aggregation Using Clustered Slepian-Wolf Coding in Wireless Sensor Networks , 2007, 2007 IEEE International Conference on Communications.

[61]  Abhishek Rao,et al.  Energy efficient wireless sensor networks using asymmetric distributed source coding , 2012, Other Conferences.

[62]  Jun Chen,et al.  On the Codebook-Level Duality Between Slepian-Woif Coding and Channel Coding , 2007, 2007 Information Theory and Applications Workshop.

[63]  Der-Jiunn Deng,et al.  Recent issues in wireless sensor networks , 2013, Int. J. Commun. Syst..

[64]  Catarina Brites,et al.  Wyner-Ziv video coding: A review of the early architectures and further developments , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[65]  Wenjun Zeng,et al.  Wyner-Ziv video coding with multi-resolution motion refinement: theoretical analysis and practical significance , 2008, Electronic Imaging.

[66]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[67]  Hyunseung Choo,et al.  SCCS: Spatiotemporal clustering and compressing schemes for efficient data collection applications in WSNs , 2010, Int. J. Commun. Syst..

[68]  Okkyung Choi,et al.  LZCode based compression method for effectively using the memory of embedded devices , 2013, Int. J. Commun. Syst..

[69]  Michael B. Wakin,et al.  A geometric approach to multi-view compressive imaging , 2012, EURASIP J. Adv. Signal Process..

[70]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[71]  Roberto Manduchi,et al.  An Ultralow-Power Wireless Camera Node: Development and Performance Analysis , 2011, IEEE Transactions on Instrumentation and Measurement.

[72]  Abbas Jamalipour,et al.  Accuracy, latency, and energy cross-optimization in wireless sensor networks through infection spreading , 2011, Int. J. Commun. Syst..

[73]  Bernd Girod WYNER-ZIV VIDEO CODING WITH LOW ENCODER COMPLEXITY , 2004 .

[74]  Jean Bacon,et al.  A survey of Wireless Sensor Network technologies: research trends and middleware’s role , 2005 .

[75]  Michael Gastpar,et al.  On Wyner-Ziv networks , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[76]  Othman Omran Khalifa Review of Wavelet Theory and Its Application Toimage Data Compression , 1970 .

[77]  Paul D. Amer,et al.  Application level framing applied to image compression , 2002, Ann. des Télécommunications.

[78]  Syed Ali Khayam,et al.  Energy efficient video compression for wireless sensor networks , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[79]  Wen Gao,et al.  Wyner–Ziv-Based Multiview Video Coding , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[80]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[81]  Hong-Hsu Yen,et al.  MAC-Aware and Power-Aware Image Aggregation Scheme in Wireless Visual Sensor Networks , 2013, J. Sensors.

[82]  Samee Ullah Khan,et al.  Clustering-based power-controlled routing for mobile wireless sensor networks , 2012, Int. J. Commun. Syst..

[83]  Liang Xiao,et al.  Compressed sensing joint reconstruction for multi-view images , 2010 .

[84]  M. B. I. Reaz,et al.  A modified-set partitioning in hierarchical trees algorithm for real-time image compression , 2008 .

[85]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[86]  Richard I. Hartley,et al.  Theory and Practice of Projective Rectification , 1999, International Journal of Computer Vision.

[87]  Wei Song Strategies and Techniques for Data Compression in Wireless Sensor Networks , 2013 .

[88]  Sidharth Jaggi,et al.  “Real” Slepian-Wolf codes , 2008, 2008 IEEE International Symposium on Information Theory.

[89]  Mohamed Abid,et al.  DCT & DWT IMAGES COMPRESSION ALGORITHMS IN WIRELESS SENSORS NETWORKS : COMPARATIVE STUDY AND PERFORMANCE ANALYSIS , 2012 .

[90]  William A. Pearlman,et al.  Efficient, low-complexity image coding with a set-partitioning embedded block coder , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[91]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[92]  Jian Guo,et al.  A Coding and Postprocessing Framework of Multiview Distributed Video for Wireless Video Sensor Networks , 2013, Int. J. Distributed Sens. Networks.

[93]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[94]  Mani Srivastava,et al.  Energy-aware wireless microsensor networks , 2002, IEEE Signal Process. Mag..

[95]  Dongkyun Kim,et al.  Analyzing Routing Protocols for Underwater Wireless Sensor Networks , 2010, Int. J. Commun. Networks Inf. Secur..

[96]  Roman Starosolski,et al.  Modified Golomb-Rice Codes for Lossless Compression of Medical Images , 2003 .

[97]  Michael Gastpar,et al.  Distributed Source Coding - Theory, Algorithms and Applications , 2009 .

[98]  Zuoyin Tang Distributed source coding schemes for wireless sensor networks , 2007 .

[99]  Felipe García-Sánchez,et al.  Current Trends in Wireless Mesh Sensor Networks: A Review of Competing Approaches , 2013, Sensors.

[100]  P. Rajmic,et al.  DWT-SPIHT IMAGE CODEC IMPLEMENTATION , 2007 .

[101]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[102]  Li Qiang Tao,et al.  Low-jitter slot assignment algorithm for deadline-aware packet transmission in wireless video surveillance sensor networks , 2011, Int. J. Commun. Syst..

[103]  Farhat Anwar,et al.  Enhanced Clustering Routing Protocol for Power-Efficient Gathering in Wireless Sensor Network , 2012, Int. J. Commun. Networks Inf. Secur..

[104]  Jun Sun,et al.  Compressive data gathering for large-scale wireless sensor networks , 2009, MobiCom '09.