Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

ABSTRACT A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37°C, with an optimum growth temperature of 18°C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37°C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

[1]  J. Hawari,et al.  Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. , 2005, International journal of systematic and evolutionary microbiology.

[2]  Jizhong Zhou,et al.  Metal reduction at cold temperatures by Shewanella isolates from various marine environments , 2005 .

[3]  D. Nicolau,et al.  Shewanella waksmanii sp. nov., isolated from a sipuncula (Phascolosoma japonicum). , 2003, International journal of systematic and evolutionary microbiology.

[4]  D. Newman,et al.  Genetic identification of a respiratory arsenate reductase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Kukkadapu,et al.  Influence of Electron Donor/Acceptor Concentrations on Hydrous Ferric Oxide (HFO) Bioreduction , 2003, Biodegradation.

[6]  D. Nicolau,et al.  Shewanella fidelis sp. nov., isolated from sediments and sea water. , 2003, International journal of systematic and evolutionary microbiology.

[7]  H. Oikawa,et al.  Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. , 2003, International journal of systematic and evolutionary microbiology.

[8]  Jizhong Zhou,et al.  Biogeochemical and environmental factors in Fe biomineralization: magnetite and siderite formation , 2003 .

[9]  Jizhong Zhou,et al.  Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado , 2002, Applied and Environmental Microbiology.

[10]  M. Lidstrom,et al.  Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. , 2002, BioTechniques.

[11]  Carol S. Giometti,et al.  Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress , 2002, Applied and Environmental Microbiology.

[12]  Robert J. Lauf,et al.  Microbial synthesis and the characterization of metal-substituted magnetites , 2001 .

[13]  D. Nicolau,et al.  Shewanella japonica sp. nov. , 2001, International journal of systematic and evolutionary microbiology.

[14]  Ling V. Sun,et al.  Determination of Wolbachia Genome Size by Pulsed-Field Gel Electrophoresis , 2001, Journal of bacteriology.

[15]  R. Kukkadapu,et al.  Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. , 2001, Environmental science & technology.

[16]  Simon A. Levin,et al.  Encyclopedia of Biodiversity , 2000 .

[17]  C. G. Wheat,et al.  Continuous sampling of hydrothermal fluids from Loihi Seamount after the 1996 event , 2000 .

[18]  N. M. Price,et al.  Marine bacteria and biogeochemical cycling of iron in the oceans , 1999 .

[19]  F. Oldfield,et al.  Possible evidence for dissimilatory bacterial magnetite dominating the magnetic properties of recent lake sediments , 1999 .

[20]  D C White,et al.  Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. , 1999, International journal of systematic bacteriology.

[21]  H. Vali,et al.  Formation of single-domain magnetite by a thermophilic bacterium , 1998 .

[22]  T. Onstott,et al.  BIOGENIC IRON MINERALIZATION ACCOMPANYING THE DISSIMILATORY REDUCTION OF HYDROUS FERRIC OXIDE BY A GROUNDWATER BACTERIUM , 1998 .

[23]  K. Horikoshi,et al.  Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. , 1998, Archives of Microbiology.

[24]  T. Phelps,et al.  Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria , 1997 .

[25]  T. McMeekin,et al.  Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. , 1997, International journal of systematic bacteriology.

[26]  Jizhong Zhou,et al.  Thermophilic Fe(III)-Reducing Bacteria from the Deep Subsurface: The Evolutionary Implications , 1997 .

[27]  C. Myers,et al.  Replication of plasmids with the p15A origin in Shewanella putrefaciens MR‐1 , 1997, Letters in applied microbiology.

[28]  Raja Mazumder,et al.  Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium , 1995 .

[29]  T. Ezaki,et al.  Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335. , 1992, International journal of systematic bacteriology.

[30]  K. Sanderson,et al.  A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis , 1992, Journal of bacteriology.

[31]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[32]  D. Lovley,et al.  Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15 , 1990, Applied and environmental microbiology.

[33]  R. Frankel,et al.  Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium , 1990 .

[34]  R. Frankel,et al.  A Comparison of Magnetite Particles Produced Anaerobically by Magnetotactic and Dissimilatory Iron‐Reducing Bacteria , 1989 .

[35]  Derek R. Lovley,et al.  Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism , 1987, Nature.

[36]  A. Mills,et al.  Biogeochemical Conditions Favoring Magnetite Formation during Anaerobic Iron Reduction , 1987, Applied and environmental microbiology.

[37]  R. Colwell,et al.  Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella , 1985 .

[38]  J. Hobbie,et al.  Use of nuclepore filters for counting bacteria by fluorescence microscopy , 1977, Applied and environmental microbiology.

[39]  Ellen Jo Baron,et al.  Manual of clinical microbiology , 1975 .

[40]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[41]  F. Jiménez,et al.  Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. , 2002, International journal of systematic and evolutionary microbiology.

[42]  R. Y. Morita,et al.  Psychrophiles, Origin of , 2001 .

[43]  D. Bazylinski,et al.  Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance , 1997 .