Towards High Performance Metal-Organic Framework-Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping.

Membrane separation for gas purification is an energy-efficient and environment-friendly technology. However, the development of high performance membranes is still a great challenge. In principle, mixed matrix membranes (MMMs) have the potential to overcome current materials limitations, but in practice there is no straightforward method to match the properties of fillers and polymers (the main components of MMMs) in such a way that the final membrane performance reflects the high performance of the microporous filler and the processability of the continuous polymer phase. This issue is especially important when high flux polymers are utilized. In this work, we demonstrate that the use of small amounts of a glassy polymer in combination with high performance PIM-1 allow for the preparation of metal-organic framework (MOF)-based MMMs with superior separation properties and low aging rates under humid conditions, meeting the commercial target for post-combustion CO2 capture.

[1]  F. Kapteijn,et al.  Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture. , 2018, Chemistry.

[2]  F. Kapteijn,et al.  High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer , 2018 .

[3]  M. Rana,et al.  Recent progress of fillers in mixed matrix membranes for CO2 separation: A review , 2017 .

[4]  K. Titov,et al.  Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites , 2017 .

[5]  Christian J. Doonan,et al.  Mixed‐Matrix‐Membranen , 2017 .

[6]  Christian J. Doonan,et al.  Mixed-Matrix Membranes. , 2017, Angewandte Chemie.

[7]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[8]  H. Kusuda,et al.  Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles , 2017, Nature Energy.

[9]  L. Shao,et al.  Hyper-Cross-Linked Additives that Impede Aging and Enhance Permeability in Thin Polyacetylene Films for Organic Solvent Nanofiltration. , 2017, ACS applied materials & interfaces.

[10]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[11]  S. Kaliaguine,et al.  Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes , 2016 .

[12]  M. Hill,et al.  Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films , 2016 .

[13]  M. Guiver,et al.  Advances in high permeability polymer-based membrane materials for CO2 separations , 2016 .

[14]  Liangjun Hu,et al.  Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance , 2016, Advanced materials.

[15]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[16]  A. Cheetham,et al.  Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes , 2016 .

[17]  D. F. Kennedy,et al.  Gas-separation membranes loaded with porous aromatic frameworks that improve with age. , 2015, Angewandte Chemie.

[18]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[19]  A. Hill,et al.  Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes , 2015, Scientific Reports.

[20]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[21]  A. Cheetham,et al.  Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes , 2014, Nature Communications.

[22]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[23]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[24]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[25]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[26]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[27]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[28]  B. Laird,et al.  A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[29]  Ryan P. Lively,et al.  Water and beyond: Expanding the spectrum of large‐scale energy efficient separation processes , 2012 .

[30]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[31]  S. Dai,et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. , 2012, Journal of the American Chemical Society.

[32]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[33]  Xinlei Liu,et al.  An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. , 2011, Angewandte Chemie.

[34]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[35]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[36]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[37]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[38]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[39]  L. Robeson,et al.  The upper bound revisited , 2008 .

[40]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[41]  M. Guiver,et al.  Effects of Brominating Matrimid Polyimide on the Physical and Gas Transport Properties of Derived Carbon Membranes , 2005 .

[42]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[43]  D. R. Paul Fibers from Polymer Blends , 1978 .