Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants

ABSTRACT For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.

[1]  R. Patel,et al.  Probiotics for prevention of necrotizing enterocolitis: Where do we stand? , 2022, Seminars in perinatology.

[2]  T. Vatanen,et al.  Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants , 2022, Nature Microbiology.

[3]  L. Hall,et al.  The early-life gut microbiome and vaccine efficacy. , 2022, The Lancet. Microbe.

[4]  M. Nieuwdorp,et al.  Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders , 2022, Metabolites.

[5]  K. Järvinen,et al.  Gut microbiome and breast-feeding: Implications for early immune development. , 2022, The Journal of allergy and clinical immunology.

[6]  Zhemin Zhou,et al.  A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome , 2022, Nature Communications.

[7]  Guozhong Tao,et al.  Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis , 2022, Frontiers in Pediatrics.

[8]  C. Slupsky,et al.  Preterm Infant Fecal Microbiota and Metabolite Profiles Are Modulated in a Probiotic Specific Manner , 2022, Journal of pediatric gastroenterology and nutrition.

[9]  A. Osterman,et al.  Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides , 2022, The ISME Journal.

[10]  Michael J. Barratt,et al.  Gut microbiome development and childhood undernutrition. , 2022, Cell host & microbe.

[11]  J. Gerber,et al.  Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. , 2022, Cell host & microbe.

[12]  Steven Smriga,et al.  Dosing a synbiotic of human milk oligosaccharides and B. infantis leads to reversible engraftment in healthy adult microbiomes without antibiotics. , 2022, Cell host & microbe.

[13]  N. Neff,et al.  Robust Variation in Infant Gut Microbiome Assembly Across a Spectrum of Lifestyles , 2022, bioRxiv.

[14]  J. Dalphin,et al.  Bifidobacterium Species Colonization in Infancy: A Global Cross-Sectional Comparison by Population History of Breastfeeding , 2022, Nutrients.

[15]  Michael J. Barratt,et al.  Human Milk Oligosaccharide Compositions Illustrate Global Variations in Early Nutrition. , 2022, The Journal of nutrition.

[16]  B. Laraway,et al.  Bifidobacterium longum subsp. infantis EVC001 Administration Is Associated with a Significant Reduction in the Incidence of Necrotizing Enterocolitis in Very Low Birth Weight Infants , 2022, The Journal of pediatrics.

[17]  OUP accepted manuscript , 2022, Journal of NutriLife.

[18]  E. Dempsey,et al.  Clinical implications of preterm infant gut microbiome development , 2021, Nature Microbiology.

[19]  C. Lebrilla,et al.  Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity , 2021, Applied and environmental microbiology.

[20]  T. R. Licht,et al.  Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut , 2021, Nature Microbiology.

[21]  G. Tannock Building Robust Assemblages of Bacteria in the Human Gut in Early Life , 2021, Applied and environmental microbiology.

[22]  Michaeline B. N. Albright,et al.  Solutions in microbiome engineering: prioritizing barriers to organism establishment , 2021, The ISME Journal.

[23]  F. Turroni,et al.  Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon , 2021, Microbial genomics.

[24]  B. Poindexter Use of Probiotics in Preterm Infants , 2021, Pediatrics.

[25]  C. Hill,et al.  The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics , 2021, Nature Reviews Gastroenterology & Hepatology.

[26]  J. Clemente,et al.  Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in Old Order Mennonites with traditional farming lifestyle , 2021, Allergy.

[27]  J. Smilowitz,et al.  Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year , 2021, Pediatric Research.

[28]  K. Sylvester,et al.  Metagenomic insights of the infant microbiome community structure and function across multiple sites in the United States , 2021, Scientific reports.

[29]  S. Patole,et al.  Prophylactic Probiotic Supplementation for Preterm Neonates-A Systematic Review and Meta-Analysis of Nonrandomized Studies. , 2021, Advances in nutrition.

[30]  C. Slupsky,et al.  Bifidobacterium catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection , 2021, Gut microbes.

[31]  A. Marette,et al.  Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis , 2021, Gut microbes.

[32]  J. German,et al.  Bifidobacteria-mediated immune system imprinting early in life , 2020, Cell.

[33]  S. Frese,et al.  Impact of Probiotic B. infantis EVC001 Feeding in Premature Infants on the Gut Microbiome, Nosocomially Acquired Antibiotic Resistance, and Enteric Inflammation , 2020, Frontiers in Pediatrics.

[34]  C. Lebrilla,et al.  Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells , 2020, BMC microbiology.

[35]  J. Versalovic,et al.  Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. , 2020, ACS infectious diseases.

[36]  N. Meader,et al.  Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. , 2020, The Cochrane database of systematic reviews.

[37]  G. Reid,et al.  The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics , 2020, Nature Reviews Gastroenterology & Hepatology.

[38]  M. Marzorati,et al.  Synbiotic Effect of Bifidobacterium Lactis CNCM I-3446 and Bovine Milk-Derived Oligosaccharides on Infant Gut Microbiota , 2020, Nutrients.

[39]  M. Arumugam,et al.  Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways , 2020, Nature Communications.

[40]  B. Sadeghirad,et al.  Probiotics Reduce Mortality and Morbidity in Preterm, Low Birth Weight Infants: a Systematic Review and Network Meta-analysis of Randomized Trials. , 2020, Gastroenterology.

[41]  P. Gluckman,et al.  Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets , 2020, Gut microbes.

[42]  S. Frese,et al.  Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides , 2020, Frontiers in Nutrition.

[43]  D. Mills,et al.  Effects of Milk Secretory Immunoglobulin A on the Commensal Microbiota. , 2020, Nestle Nutrition Institute workshop series.

[44]  P. Campiglia,et al.  Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. , 2020, Pediatric Research.

[45]  Aina Gotoh,et al.  Varied Pathways of Infant Gut-Associated Bifidobacterium to Assimilate Human Milk Oligosaccharides: Prevalence of the Gene Set and Its Correlation with Bifidobacteria-Rich Microbiota Formation , 2019, Nutrients.

[46]  A. Rani,et al.  Comparative Pangenomics of the Mammalian Gut Commensal Bifidobacterium longum , 2019, Microorganisms.

[47]  A. Wijeyesekera,et al.  Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem , 2019, The ISME Journal.

[48]  P. Clarke,et al.  Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics , 2019, Archives of Disease in Childhood.

[49]  J. Sonnenburg,et al.  Vulnerability of the industrialized microbiota , 2019, Science.

[50]  P. Schlievert,et al.  Glycerol Monolaurate Contributes to the Antimicrobial and Anti-inflammatory Activity of Human Milk , 2019, Scientific Reports.

[51]  T. Ahmed,et al.  Association of faecal pH with childhood stunting: Results from a cross-sectional study , 2019, BMJ Paediatrics Open.

[52]  T. Odamaki,et al.  Production of Indole-3-Lactic Acid by Bifidobacterium Strains Isolated fromHuman Infants , 2019, Microorganisms.

[53]  J. Smilowitz,et al.  Colonization by B. infantis EVC001 modulates enteric inflammation in exclusively breastfed infants , 2019, Pediatric Research.

[54]  J. Smilowitz,et al.  Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria , 2019, Antimicrobial Resistance & Infection Control.

[55]  A. Heath,et al.  Fecal Microbiotas of Indonesian and New Zealand Children Differ in Complexity and Bifidobacterial Taxa during the First Year of Life , 2019, Applied and Environmental Microbiology.

[56]  P. Clarke,et al.  Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome , 2019, bioRxiv.

[57]  J. Sonnenburg,et al.  The ancestral and industrialized gut microbiota and implications for human health , 2019, Nature Reviews Microbiology.

[58]  E. Segal,et al.  The pros, cons, and many unknowns of probiotics , 2019, Nature Medicine.

[59]  Randall C. Robinson Structures and Metabolic Properties of Bovine Milk Oligosaccharides and Their Potential in the Development of Novel Therapeutics , 2019, Front. Nutr..

[60]  R. V. van Lingen,et al.  The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care , 2019, Front. Cell. Infect. Microbiol..

[61]  K. Kalanetra,et al.  Bifidobacterium Abundance in Early Infancy and Vaccine Response at 2 Years of Age , 2019, Pediatrics.

[62]  Philipp C. Münch,et al.  Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life , 2018, Nature Microbiology.

[63]  R. Knight,et al.  Preserving microbial diversity , 2018, Science.

[64]  Jinxin Liu,et al.  Bifidobacterial Dominance of the Gut in Early Life and Acquisition of Antimicrobial Resistance , 2018, mSphere.

[65]  Sean M. Kearney,et al.  Orthogonal Dietary Niche Enables Reversible Engraftment of a Gut Bacterial Commensal. , 2018, Cell reports.

[66]  D. Mills,et al.  Synbiotics Bifidobacterium infantis and milk oligosaccharides are effective in reversing cancer-prone nonalcoholic steatohepatitis using western diet-fed FXR knockout mouse models. , 2018, The Journal of nutritional biochemistry.

[67]  E. Dempsey,et al.  Dose-interval study of a dual probiotic in preterm infants , 2018, Archives of Disease in Childhood: Fetal and Neonatal Edition.

[68]  Harry Sokol,et al.  Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. , 2018, Cell host & microbe.

[69]  Weston R. Whitaker,et al.  An exclusive metabolic niche enables strain engraftment in the gut microbiota , 2018, Nature.

[70]  J. Smilowitz,et al.  Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium over the Past Century , 2018, mSphere.

[71]  C. Hill,et al.  Identification of probiotic effector molecules: present state and future perspectives. , 2018, Current opinion in biotechnology.

[72]  A. Benson,et al.  Shared mechanisms among probiotic taxa: implications for general probiotic claims. , 2018, Current opinion in biotechnology.

[73]  R. V. van Lingen,et al.  Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants , 2018, European Journal of Clinical Microbiology & Infectious Diseases.

[74]  F. Turroni,et al.  Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. , 2017, Trends in microbiology.

[75]  C. Lebrilla,et al.  Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants , 2017, mSphere.

[76]  C. Lebrilla,et al.  Digestion of Human Milk Oligosaccharides by Bifidobacterium breve in the Premature Infant , 2017, Journal of pediatric gastroenterology and nutrition.

[77]  K. Costeloe,et al.  The Microbiome of Infants Recruited to a Randomised Placebo-controlled Probiotic Trial (PiPS Trial) , 2017, EBioMedicine.

[78]  Erik Hjerde,et al.  Bifidobacterium Bacteremia: Clinical Characteristics and a Genomic Approach To Assess Pathogenicity , 2017, Journal of Clinical Microbiology.

[79]  Fabian Rivera-Chávez,et al.  Colonization resistance: The deconvolution of a complex trait , 2017, The Journal of Biological Chemistry.

[80]  V. Tejnecký,et al.  Assessment of the synbiotic properites of human milk oligosaccharides and Bifidobacterium longum subsp. infantis in vitro and in humanised mice. , 2017, Beneficial microbes.

[81]  A. Prentice,et al.  Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota , 2017, Scientific Reports.

[82]  L. R. Ruhaak,et al.  Analysis of Milk Oligosaccharides by Mass Spectrometry. , 2017, Methods in molecular biology.

[83]  Z. Weizman Probiotic Administration in Infants With Gastroschisis: A Pilot Randomized Placebo-Controlled Trial. , 2016, Journal of pediatric gastroenterology and nutrition.

[84]  C. Lacroix,et al.  Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense , 2016, BMC Microbiology.

[85]  Danielle G. Lemay,et al.  A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596 , 2016, Scientific Reports.

[86]  Takuji Yamada,et al.  A key genetic factor for fucosyllactose utilization affects infant gut microbiota development , 2016, Nature Communications.

[87]  P. Gastmeier,et al.  Protective Effect of Dual-Strain Probiotics in Preterm Infants: A Multi-Center Time Series Analysis , 2016, PloS one.

[88]  Martin J. Blaser,et al.  Antibiotics, birth mode, and diet shape microbiome maturation during early life , 2016, Science Translational Medicine.

[89]  G. Tannock,et al.  Why Don't All Infants Have Bifidobacteria in Their Stool? , 2016, Front. Microbiol..

[90]  Eric A. Franzosa,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[91]  H. Bucher,et al.  Short courses of dual‐strain probiotics appear to be effective in reducing necrotising enterocolitis , 2016, Acta paediatrica.

[92]  A. Margolles,et al.  Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health , 2016, Front. Microbiol..

[93]  K. Costeloe,et al.  Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial , 2016, The Lancet.

[94]  M. Underwood,et al.  Validating bifidobacterial species and subspecies identity in commercial probiotic products , 2015, Pediatric Research.

[95]  Tobias Kollmann,et al.  Early infancy microbial and metabolic alterations affect risk of childhood asthma , 2015, Science Translational Medicine.

[96]  T. Hennet,et al.  Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice , 2015, Nature Communications.

[97]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[98]  Danielle G. Lemay,et al.  Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants , 2015, Microbiome.

[99]  A. Berger,et al.  Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) prevent NEC in VLBW infants fed breast milk but not formula , 2015, Pediatric Research.

[100]  E. Dinleyici,et al.  The history of probiotics: the untold story. , 2015, Beneficial microbes.

[101]  Nicholas A. Bokulich,et al.  Human Milk Glycomics and Gut Microbial Genomics in Infant Feces Show a Correlation between Human Milk Oligosaccharides and Gut Microbiota: A Proof-of-Concept Study , 2014, Journal of proteome research.

[102]  C. Lebrilla,et al.  Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut , 2015, Pediatric Research.

[103]  J. Bruce German,et al.  Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies , 2014, Analytical and Bioanalytical Chemistry.

[104]  Brandi L. Cantarel,et al.  Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut , 2014, Cell.

[105]  D. Ward,et al.  Intestinal microbiota of preterm infants differ over time and between hospitals , 2014, Microbiome.

[106]  D. Ward,et al.  Intestinal microbiota of preterm infants differ over time and between hospitals , 2014, Microbiome.

[107]  W. Göpel,et al.  Prophylactic use of Lactobacillus acidophilus/Bifidobacterium infantis probiotics and outcome in very low birth weight infants. , 2014, The Journal of pediatrics.

[108]  Glenn R. Gibson,et al.  The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic , 2014 .

[109]  K. Kalanetra,et al.  Stool Microbiota and Vaccine Responses of Infants , 2014, Pediatrics.

[110]  L. R. Ruhaak,et al.  Detection of milk oligosaccharides in plasma of infants , 2014, Analytical and Bioanalytical Chemistry.

[111]  Qunyuan Zhang,et al.  Persistent Gut Microbiota Immaturity in Malnourished Bangladeshi Children , 2014, Nature.

[112]  Nicholas A. Bokulich,et al.  A comparison of two probiotic strains of bifidobacteria in premature infants. , 2013, The Journal of pediatrics.

[113]  B. Weimer,et al.  Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens , 2013, Nature.

[114]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[115]  F. Powrie,et al.  Feed Your Tregs More Fiber , 2013, Science.

[116]  C. Lebrilla,et al.  Variation in Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Strains of Bifidobacterium breve , 2013, Applied and Environmental Microbiology.

[117]  C. Lebrilla,et al.  Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. , 2013, Journal of proteome research.

[118]  Nicholas A. Bokulich,et al.  Probiotic Administration in Congenital Heart Disease: A Pilot Study , 2013, Journal of Perinatology.

[119]  D. Block,et al.  Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. , 2013, Food microbiology.

[120]  John S. Strum,et al.  A quantitative and comprehensive method to analyze human milk oligosaccharide structures in the urine and feces of infants , 2013, Analytical and Bioanalytical Chemistry.

[121]  C. Lebrilla,et al.  Proteomic Analysis of Bifidobacterium longum subsp. infantis Reveals the Metabolic Insight on Consumption of Prebiotics and Host Glycans , 2013, PloS one.

[122]  Koji Yamauchi,et al.  Isolation of a Bifidogenic Peptide from the Pepsin Hydrolysate of Bovine Lactoferrin , 2013, Applied and Environmental Microbiology.

[123]  L Renee Ruhaak,et al.  Analysis and role of oligosaccharides in milk. , 2012, BMB reports.

[124]  John S. Strum,et al.  Identification and accurate quantitation of biological oligosaccharide mixtures. , 2012, Analytical chemistry.

[125]  D. Mills,et al.  Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. , 2012, Anaerobe.

[126]  J. Sonnenburg,et al.  Human milk oligosaccharide consumption by intestinal microbiota. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[127]  M. Kitaoka,et al.  Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. , 2012, Advances in nutrition.

[128]  C. Kunz Historical aspects of human milk oligosaccharides. , 2012, Advances in nutrition.

[129]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[130]  A. Joachimiak,et al.  Bifidobacterium longum subsp. infantis ATCC 15697 α-Fucosidases Are Active on Fucosylated Human Milk Oligosaccharides , 2011, Applied and Environmental Microbiology.

[131]  Bernard Henrissat,et al.  The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins , 2011, Science Translational Medicine.

[132]  J. Neu Routine probiotics for premature infants: let's be careful! , 2011, The Journal of pediatrics.

[133]  J. German,et al.  Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans , 2011, PloS one.

[134]  C. Lebrilla,et al.  Annotation and structural analysis of sialylated human milk oligosaccharides. , 2011, Journal of proteome research.

[135]  X. Chen,et al.  An Infant-associated Bacterial Commensal Utilizes Breast Milk Sialyloligosaccharides* , 2011, The Journal of Biological Chemistry.

[136]  M. Hattori,et al.  Bifidobacteria can protect from enteropathogenic infection through production of acetate , 2011, Nature.

[137]  Aldert L. Zomer,et al.  Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging , 2010, Proceedings of the National Academy of Sciences.

[138]  B. Weimer,et al.  Broad Conservation of Milk Utilization Genes in Bifidobacterium longum subsp. infantis as Revealed by Comparative Genomic Hybridization , 2010, Applied and Environmental Microbiology.

[139]  C. Lebrilla,et al.  Development of an annotated library of neutral human milk oligosaccharides. , 2010, Journal of proteome research.

[140]  C. Bührer,et al.  Probiotics for Prevention of Necrotising Enterocolitis: An Updated Meta-analysis , 2010, Klinische Padiatrie.

[141]  R. Knight,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2010, Proceedings of the National Academy of Sciences.

[142]  John W. Froehlich,et al.  Consumption of human milk oligosaccharides by gut-related microbes. , 2010, Journal of agricultural and food chemistry.

[143]  M. Bulsara,et al.  Updated Meta-analysis of Probiotics for Preventing Necrotizing Enterocolitis in Preterm Neonates , 2010, Pediatrics.

[144]  T. Odamaki,et al.  Antibiotic Susceptibility of Bifidobacterial Strains Distributed in the Japanese Market , 2010, Bioscience, biotechnology, and biochemistry.

[145]  R. Xavier,et al.  Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 , 2009, Nature.

[146]  Scott R. Kronewitter,et al.  A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides , 2009, Microbial biotechnology.

[147]  J. Chapman,et al.  The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome , 2008, Proceedings of the National Academy of Sciences.

[148]  Chyong-hsin Hsu,et al.  Oral Probiotics Prevent Necrotizing Enterocolitis in Very Low Birth Weight Preterm Infants: A Multicenter, Randomized, Controlled Trial , 2008, Pediatrics.

[149]  B. Biavati,et al.  Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. , 2008, International journal of systematic and evolutionary microbiology.

[150]  C. Lebrilla,et al.  Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. , 2008, Journal of agricultural and food chemistry.

[151]  C. Lebrilla,et al.  In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. , 2007, Molecular nutrition & food research.

[152]  C. Lebrilla,et al.  Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. , 2007, Journal of agricultural and food chemistry.

[153]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[154]  C. Lebrilla,et al.  In Vitro Fermentation of Breast Milk Oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri , 2006, Applied and Environmental Microbiology.

[155]  G. Tannock New perceptions of the gut microbiota: implications for future research. , 2005, Gastroenterology clinics of North America.

[156]  M. Nishimoto,et al.  Novel Putative Galactose Operon Involving Lacto-N-Biose Phosphorylase in Bifidobacterium longum , 2005, Applied and Environmental Microbiology.

[157]  C. Lebrilla,et al.  Application of Fourier transform ion cyclotron resonance mass spectrometry to oligosaccharides. , 2005, Mass spectrometry reviews.

[158]  H. Kumagai,et al.  Molecular Cloning and Characterization of Bifidobacterium bifidum 1,2-α-l-Fucosidase (AfcA), a Novel Inverting Glycosidase (Glycoside Hydrolase Family 95) , 2004, Journal of bacteriology.

[159]  A. Woodcock,et al.  Bifidobacterial Species Differentially Affect Expression of Cell Surface Markers and Cytokines of Dendritic Cells Harvested from Cord Blood , 2004, Clinical Diagnostic Laboratory Immunology.

[160]  Elie. Metchnikoff The Prolongation of Life: Optimistic Studies , 2003 .

[161]  G. Ruiz-Palacios,et al.  Campylobacter jejuni Binds Intestinal H(O) Antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of Human Milk Inhibit Its Binding and Infection* , 2003, The Journal of Biological Chemistry.

[162]  M. Raida,et al.  Human milk provides peptides highly stimulating the growth of bifidobacteria. , 2002, European journal of biochemistry.

[163]  W. Forssmann,et al.  Purification of novel peptide antibiotics from human milk. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[164]  M. Mank,et al.  Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. , 2000, Analytical biochemistry.

[165]  M. Tomita,et al.  Identification of lactoperoxidase in mature human milk. , 2000, The Journal of nutritional biochemistry.

[166]  N Klein,et al.  Oligosaccharides in human milk: structural, functional, and metabolic aspects. , 2000, Annual review of nutrition.

[167]  R. Atlas Probiotics--snake oil for the new millennium? , 1999, Environmental microbiology.

[168]  A. Hoyos Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. , 1999, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[169]  R. Berg Probiotics, prebiotics or 'conbiotics'? , 1998, Trends in microbiology.

[170]  B. Lönnerdal,et al.  Lactoferrin: molecular structure and biological function. , 1995, Annual review of nutrition.

[171]  M. Millar,et al.  Lactoferricin, a new antimicrobial peptide. , 1994, The Journal of applied bacteriology.

[172]  D. Goldmann The bacterial flora of neonates in intensive care-monitoring and manipulation. , 1988, The Journal of hospital infection.

[173]  G. Lawrence,et al.  PATHOGENESIS OF NEONATAL NECROTISING ENTEROCOLITIS , 1982, The Lancet.

[174]  A. Ferrari,et al.  Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp , 1979, Applied and environmental microbiology.

[175]  G. Reuter Designation of Type Strains for Bifidobacterium Species , 1971 .

[176]  G. Reuter [COMPARATIVE STUDIES ON THE BIFIDUS FLORA IN THE FECES OF INFANTS AND ADULTS. WITH A CONTRIBUTION TO CLASSIFICATION AND NOMENCLATURE OF BIFIDUS STRAINS]. , 1963, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1. Abt. Medizinisch-hygienische Bakteriologie, Virusforschung und Parasitologie. Originale.

[177]  A BULLEID,et al.  The Microbe Hunters , 1954, Proceedings of the Royal Society of Medicine.

[178]  J. R. Hoover,et al.  Bifidus factor. III. The rate of dialysis. , 1954, Archives of biochemistry and biophysics.

[179]  R. Norris,et al.  Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. , 1954, Archives of biochemistry and biophysics.

[180]  R. Norris,et al.  A hitherto unrecognized biochemical difference between human milk and cow's milk. , 1952, A.M.A. American journal of diseases of children.

[181]  G. Runge,et al.  Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. , 1952, The Journal of pediatrics.

[182]  K. Howell,et al.  Some factors influencing the fecal flora of infants. , 1932 .

[183]  M. F. Upton THE ANAEROBIC INTESTINAL FLORA OF NORMAL BREAST-FED AND ARTIFICIALLY FED INFANTS , 1929 .

[184]  R. Norton,et al.  THE HYDROGEN ION CONCENTRATION OF THE STOOLS OF NEW-BORN INFANTS , 1926 .

[185]  F. Tisdall,et al.  STUDIES ON THE ACIDITY (HYDROGEN ION CONCENTRATION) OF INFANTS' STOOLS , 1924 .

[186]  Orla-Jensen La classification des bactéries lactiques , 1924 .

[187]  W. Marriott,et al.  THE ACIDITY OF THE GASTRIC CONTENTS OF INFANTS , 1923 .

[188]  A. W. Bosworth,et al.  STUDIES OF INFANT FEEDING XVI: A BACTERIOLOGIC STUDY OF THE FECES AND THE FOOD OF NORMAL BABIES RECEIVING BREAST MILK , 1922 .

[189]  W. R. Logan The intestinal flora of infants and young children , 1913 .